


Bachelorstudiengang Physik Bachelorstudiengang Meteorologie

Masterstudiengang Physik Masterstudiengang Meteorologie

Modulkatalog

Stand 20.11.2018

Fakultät für Mathematik und Physik der Leibniz Universität Hannover

Kontakt Studiendekanat der Fakultät für Mathematik und Physik

Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-4466

studiensekretariat@maphy.uni-hannover.de

Studiendekan Prof. Dr. Eric Jeckelmann

Appelstr. 11 A 30167 Hannover

studiendekan@maphy.uni-hannover.de

Studiengangskoordination Axel Köhler

Dr. Katrin Radatz

Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-5450

sgk@maphy.uni-hannover.de

Vorbemerkung

Der Modulkatalog Physik und Meteorologie besteht aus zwei Teilen, den Modulbeschreibungen und dem Anhang mit den Vorlesungsbeschreibungen (Lehrveranstaltungskatalog). Da in den Wahlmodulen verschiedene Vorlesungen gewählt werden können, werden diese im Anhang ausführlicher beschrieben. So sind in solchen Fällen die Angaben zu den Inhalten und der Häufigkeit des Angebots bei den Vorlesungen und nicht bei den Modulen zu finden.

Bitte beachten Sie, dass es sich hier um eine Zusammenstellung der Vorlesungen handelt, die regelmäßig angeboten werden. Insbesondere können weitere Vorlesungen im Vorlesungsverzeichnis den Wahlmodulen zugeordnet werden.

Der Modulkatalog sollte auch als Ergänzung zur Prüfungsordnung verstanden werden. Die aktuelle Version unserer Prüfungsordnung finden Sie jeweils unter:

Physik:

https://www.maphy.uni-hannover.de/de/studium/studierende/physik/

Meteorologie:

https://www.maphy.uni-hannover.de/de/studium/studierende/meteorologie/

Inhalt

Stuc	lienverlaufspläne	8
	Studienverlaufsplan BA Meteorologie	8
	Studienverlaufsplan BA Physik	10
Back	nelor Physik Kernmodule	12
	Analysis I + II	12
	Lineare Algebra I	13
	Mathematik für Physiker	14
	Mechanik und Wärme	15
	Elektrizität und Relativität	16
	Optik, Atome, Moleküle, Quantenphänomene	18
	Kerne, Teilchen, Festkörper	20
	Modulübergreifende Prüfung Experimentalphysik	21
	Mathematische Methoden der Physik	
	Theoretische Elektrodynamik	23
	Analytische Mechanik und Spezielle Relativitätstheorie	24
	Modulübergreifende Prüfung Theoretische Physik I	25
	Einführung in die Quantentheorie	26
	Statistische Physik	27
	Modulübergreifende Prüfung Theoretische Physik II	28
	Physik präsentieren	29
Back	nelor Physik – Vertiefungsbereich	30
	Einführung in die Festkörperphysik	30
	Atom- und Molekülphysik	31
	Kohärente Optik	32
	Modulübergreifende Prüfung Vertiefungsbereich	33
Back	nelor Physik Wahlbereich	34
	Moderne Aspekte der Physik	34
	Schlüsselkompetenzen	35
Back	nelor Meteorologie – Kernmodule	36
	Lineare Algebra A	36
	Lineare Algebra B	37
	Analysis A	38
	Analysis B	39
	Angewandte Mathematik	40
	Programmieren	
	Einführung in die Meteorologie	42
	Strahlung	43
	Wolkenphysik	44
	Instrumentenpraktikum	45
	Klimatologie	46
	Theoretische Meteorologie	
	Synoptische Meteorologie	48
	Studium und Beruf	
	Meteorologische Exkursion I	50
Back	nelor Meteorologie – Wahlbereich	51
	Wahlmodul Meteorologie	51

Bachelor Meteorologie – Naturwissenschaftlich-technischer Wahlbereich	52
Naturwissenschaftlich-technischer Wahlbereich	52
Bachelor Meteorologie – Schlüsselkompetenzen	53
Schlüsselkompetenzen	53
Master Physik – Fortgeschrittene Vertiefungsphase	54
Fortgeschrittene Festkörperphysik	
Fortgeschrittene Gravitationsphysik	55
Quantenoptik	56
Quantenfeldtheorie	57
Elektronik und Messtechnik	58
Master Physik - Schwerpunktsphase	59
Ausgewählte Themen moderner Physik A	59
Ausgewählte Themen moderner Physik B	60
Seminar	61
Schlüsselkompetenzen	62
Industriepraktikum	63
Master Meteorologie – Fortgeschrittene Meteorologie	64
Seminare zur Fortgeschrittene Meteorologie	64
Fortgeschrittenenpraktikum	
Schlüsselkompetenzen	66
Master Meteorologie – Wahlbereich	67
Ausgewählte Themen moderner Meteorologie A	67
Ausgewählte Themen moderner Meteorologie B	68
Ausgewählte Themen moderner Meteorologie C	69
Abschlussarbeiten und Forschungsphase	70
Bachelorprojekt	70
Forschungspraktikum /Projektplanung	
Masterarbeit	72
Lehrveranstaltungskatalog	73
Tabelle Zuordnung der Lehrveranstaltungen	75
Fortgeschrittene Quantentheorie	
Seminar zu Fortgeschrittene Quantentheorie	
Theoretische Quantenoptik und Quantendynamik	
Computerphysik	
Theoretische Festkörperphysik	
Statistische Feldtheorie	
Seminar zur Theorie der kondensierten Materie	
Fortgeschrittene Computerphysik	
Aktuelle Probleme der Theorie der kondensierten Materie	
Theorie der fundamentalen Wechselwirkungen	
Seminar zu Theorie der fundamentalen Wechselwirkungen	
Ergänzungen zur klassischen Physik	
Einführung in die Teilchenphysik	
Festkörperphysik in niedrigen Dimensionen	
Oberflächenphysik	
Vom Atom zum Festkörper	
Seminar zu Vom Atom zum Festkörper	
Halbleiterphysik	9/

Halbleitermesstechnik in der Photovoltaik	98
Rastersondentechnik	99
Molekulare Elektronik	100
Methoden der Oberflächenanalytik	101
Laborpraktikum Methoden der Oberflächenanalytik	102
Physik der Nanostrukturen	
Optische Spektroskopie von Festkörpern	
Quantenstrukturbauelemente	
Physik der Solarzelle	
Seminar "Aktuelle Forschungsfragen der Photovoltaik"	
Einführung in die elektronische Messdatenerfassung und -verarbeitung mit LabView	
Laborpraktikum Festkörperphysik	
Seminar Aktuelle Forschungsthemen der Festkörperphysik	
Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern	
Physik in Nanostrukturen	
Nichtlineare Optik	
Photonik	
Seminar zu Photonik	
Atomoptik	
Laborpraktikum Optik	
Festkörperlaser	
Optische Schichten	
Data Analysis	
Grundlagen der Lasermedizin und Biomedizinischen Optik	
Neutron Stars and Black Holes	
Seminar Gravitationswellen	
Seminar Gravitationswellen	
, ,	
Laserinterferometrie	
Laborpraktikum Laserinterferometrie	
Laserstabilisierung und Kontrolle optischer Experimente	
Laborpraktikum Cluster Computing	
Nichtklassisches Licht	
Nichtklassische Laserinterferometrie	
Elektronische Metrologie im Optiklabor	
Physics of Life	
Bionische Oberflächen durch Laserstrahlung	133
Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der	
Radioökologie	
Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs	
Radioaktivität in der Umwelt und Strahlengefährdung des Menschen	
Strahlenschutz und Radioökologie	
Nukleare Analysemethoden in der Radioanalytik	
Kernphysikalische Anwendungen in der Umweltphysik	
Radiochemie & Radioanalytik	
Einführung in die Massenspektrometrie	
Seminar/Praktikum Strahlenschutz und Radioökologie	
Fachkunde im Strahlenschutz	
Numerische Wettervorhersage	
Programmierpraktikum zur Numerischen Wettervorhersage	145

Schadstoffausbreitung in der Atmosphäre	146
Turbulenz II	147
Atmosphärische Konvektion	
Programmierpraktikum zur Simulation der atmosphärischen Grenzschicht	149
Simulation turbulenter Strömungen mit LES-Modellen	150
Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen	151
Agrarmeteorologie	152
Lokalklimate	
Fernerkundung I	154
Fernerkundung II	155
Seminar zur fortgeschrittenen Meteorologie	156
Meteorologische Exkursion II	157
Seminar Strahlung und Fernerkundung	158
Wofür braucht man Mathematik und Physik (im Meteorologie Studium)? WOMA	159
Externes Praktikum Inland	160
Externes Praktikum Ausland	

Studienverlaufspläne

Studienverlaufsplan BA Meteorologie

	1. Semester	2. Semester	3. Semester	4. Semester	5. Semeste r	6. Semester	LP
Mathematik	Lineare Algebra A 4 LP, SL, PL Analysis A 5 LP, SL, PL	Lineare Algebra B 4 LP, SL, PL Analysis B 5 LP, SL, PL	Numerik A 4 LP, SL, PL Stochastik A 4 LP, SL, PL	Programmie ren 4 LP, SL			30
Experimental Physik	Mechanik und Wärme 6 LP, SL	Elektrizität und Relativität 12 LP, SL	Optik, Atome, Moleküle, Quantenphä nomene 10 LP, SL				28
Theoretische Physik	Mathematis che Methoden der Physik oder Theoretisch e Physik A 7 LP, SL, PL	Theoretisch e Elektrodyna mik 7 LP, SL oder Theoretisch e Physik B 7 LP, SL, PL					14
Allgemeine und Angewandte Meteorologie	Einführung in die Meteorologi e I 4 LP, SL, PL	Einführung in die Meteorologi e II 4 LP, SL, PL	Strahlung I 4 LP SL, PL	Strahlung II 4 LP Wolkenphys ik 4 LP, SL, PL Synoptische N 8 LP, SL	Instrume ntenprak tikum 6 LP, SL Klimatol ogie 4 LP, SL, PL Meteorologi	e	38
Theoretische Meteorologie			Thermodyna mik und Statik 4 LP, SL, PL Kinematik und Dynamik 4 LP, SL, PL	Turbulenz und Diffusion 4 LP, SL, PL			12

Studium und Beruf	Einführung in das Studium der Meteorologi e Berufskundlic SL	hes Praktikum					5
Vertiefungsstudium				Meteorlogisch 2 LP, SL Wahlmodul Maus entsprech Lehrveranstalmind. 20 LP 20 LP, (SL), PL Naturwissens Wahlbereich Lehrveranstalmerüfungsordn Fakultäten 12 LP, (SL)	Meteorologi lend zugeor tungen im l - chaftlich – mind. 12 LF tungen der	ie Auswahl dneten Jmfang von technischer aus in der	34
Schlüsselkompe tenzen	Eine Lehrveranstaltung aus dem Angebot des Fachsprachenzentrums oder Zentrum für Schlüsselkompetenzen oder entsprechend ausgewiesene Angebote der Fakultät. 2 LP n 2 LP			4			
Präsentation und Projektarbeit						Bachelorpro jekt	15
LP/ Prüfungsl eistungen	28/4	32/4	30/5	Je nach indivi	dueller Plar	nung.	18 0

Studienverlaufsplan BA Physik

	1.	2. Semester	3. Semester	4.	5.	6.	LP
	Semester			Semester	Semester	Semester	
Mathematik	Analysis I 10 LP, SL, PL Es muss nur bestanden v Lineare Algebra I 10 LP, SL, PL	Analysis II 10 LP, SL, PL eine Klausur verden	Mathematik für Physiker I 4 LP, SL PL	Mathemat ik für Physiker II 4 LP, SL			38
Experimental Physik	Mechanik und Wärme 6 LP, SL	Elektrizität und Relativität 12 LP, SL	Optik, Atome, Moleküle, Quantenphä nomene 10 LP, SL	Kerne, Teilchen, Festkörper 10 LP, SL			38
Theoretische Physik	Mathemat ische Methoden der Physik 7 LP, SL,	Theoretisch e Elektrodyna mik 7 LP, SL	Analytische Mechanik und Spezielle Relativitätst heorie 8 LP, SL	Einführun g in die Quantent heorie 8 LP, SL	Statistisch e Physik 8 LP, SL		38
I	PL	PL	PL	PL			
Vertiefungsstudiu m					2 von 3 Vertiefungs V3+Ü1+P3 - Festkörpei - Atom- und Molekülphy - Kohärente	je 8 LP rphysik d sik	16
Physikalis che Wahlberei ch					Mind. 12 LP Lehrangebo	' aus dem t der Physik	12
Schlüssel kompeten zen		Seminar oder 4 LP	Vorlesung				4
Wahlpflic htfach	Betriebswirtschaftslehre, Chemie, Elektrotechnik, Geodäsie und Geoinformatik, Informatik, Maschinenbau, Mathematik, Meteorologie, Philosophie und Volkswirtschaftslehre.			16			

Präsentation und Projektarbeit				Physikpräs entieren Seminar 3 LP, SL		Bachelorar beit 12 LP	18
Präs Pr						Vortrag 3 LP	
Leistungsp unkte/Prüf ungsleistu ngen	33/2	29/1	Je nach indivi	dueller Planu	ng unterschie	edlich.	180

Bachelor Physik -- Kernmodule

Ar	0211			
Semesterlage	Wintersemester und Sommersemester			
Modulverantwortliche(r)	Institut für Analysis und Institut für Differ	rentialgeometrie		
Lehrveranstaltungen (SWS)	Vorlesung Analysis I Übung zu Analysis I Vorlesung Analysis II Übung zu Analysis II			
Leistungsnachweis zum Erwerb der LP	Studienleistung: jeweils die Übung zu Analysis I und zu Analysis II Prüfungsleistung: eine der Klausuren zu Analysis I oder zu Analysis II			
Notenzusammensetzung	geht nicht in die Bachelornote ein			
Leistungspunkte (ECTS): 20	Präsenzstudium (h): 180 Sel	lbststudium (h): 420		

Kompetenzziele:

Kompetenz im Umgang mit mathematischer Sprache. Grundlegendes Verständnis für die korrekte Lösung mathematisch-naturwissenschaftlicher Aufgaben in höherdimensionalen Räumen mit Hilfe von Konvergenzbetrachtungen, Differentiation und Integration. Sichere Beherrschung der entsprechenden Methoden und der mathematischen Beweistechniken. Aufgrund der Übung sind die Studierenden vertraut mit mathematisch exakten Formulierungen und Schlussweisen in einfachen Kontexten und fähig diese vorzutragen.

Inhalte:

Analysis I:

- Zahlbereiche, systematische Einführung reeller Zahlen:
- Folgen und Reihen;
- Konvergenz und Stetigkeit;
- Differentialrechnung für Funktionen in einer Variablen;
- Integralrechnung für Funktionen in einer Variablen.

Analysis II:

- Topologische Grundbegriffe wie metrische und normierte Räume, Konvergenz, Stetigkeit, Vollständigkeit, Kompaktheit;
- Differentiation von Funktionen in mehreren Variablen, totale und partielle Differenzierbarkeit, Satz über Umkehrfunktionen und implizite Funktionen, lokale Extrema mit und ohne Nebenbedingungen; Vektorfelder und Potentiale;
- gewöhnliche Differentialgleichungen, Existenz, Eindeutigkeit, elementare Lösungsmethoden.

Grundlegende Literatur:

- H. Amann & J. Escher: Analysis I, Birkhäuser Verlag, 2002
- O. Forster: *Analysis 1*, Vieweg+Teubner 2008
- H. Amann & J. Escher: Analysis II, Birkhäuser Verlag, 1999
- O. Forster: *Analysis 2*, Vieweg+Teubner, 2006

Empfohlene Vorkenntnisse:

Schulkenntnisse in Mathematik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Physik (Kernmodul)

Line	0111				
Semesterlage	Wintersemester				
Modulverantwortliche(r)	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie				
Lehrveranstaltungen (SWS)	Vorlesung Lineare Algebra I Übung zu Lineare Algebra I				
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben Prüfungsleistung: Klausur				
Notenzusammensetzung	geht nicht in die Bachelornote ein				
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 90 Selbststudium	n (h): 210			

Grundlegendes Verständnis für mathematische Denkweisen und ihre Anwendung auf verschiedene Probleme. Sicherer Umgang mit linearen Gleichungssystemen und den zugehörigen Lösungsmethoden und fundierte Kenntnisse der zugrundeliegenden algebraischen Strukturen. Ausdrucksfähigkeit in der Darstellung mathematischer Argumentationen und Kenntnis der dazu geeigneten Methoden.

Inhalte:

- Grundlegende Eigenschaften von Vektorräumen (Basis und Dimension);
- lineare Abbildungen und Matrizen;
- Determinanten;
- lineare Gleichungssysteme mit Lösungsverfahren (Gauß-Algorithmus);
- Eigenwerte und Eigenvektoren;
- Diagonalisierung.

Grundlegende Literatur:

G. Fischer, *Lineare Algebra*, Vieweg

Empfohlene Vorkenntnisse:

Schulkenntnisse in Mathematik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Physik (Kernmodul)

Mathem	0050	
Semesterlage	Wintersemester und Sommersemester	
Modulverantwortliche(r)	Institut für Analysis und Institut für Differentialgeom	netrie
Lehrveranstaltungen (SWS)	Vorlesung Mathematik für Physiker I Übung zu Mathematik für Physiker I Vorlesung Mathematik für Physiker II Übung zu Mathematik für Physiker II	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu beiden Übungen Prüfungsleistung: Mündliche Prüfung	
Notenzusammensetzung	Note der mündlichen Prüfung	
Leistungspunkte (ECTS): 8 Gewicht: 2	Präsenzstudium (h): 90 Selbststudium	m (h): 150

Die Studierenden haben ein vertieftes Verständnis für analytische Methoden insbesondere der Integrations- und Funktionentheorie. Sie haben die Fähigkeit selbstständig schwierige mathematische Argumentationen zu erarbeiten und eigenständig in der Übungsgruppe zu präsentieren. Die Studierenden haben die mathematische Struktur wichtiger Differentialgleichungen der Physik durchschaut und können geeignete Lösungsstrategien anwenden.

Inhalte:

- Lebesguesche Funktionenräume und Konvergenzsätze
- Differentialformen und Integralsätze
- Fourieranalysis
- Lineare partielle Differentialgleichungen
- Elemente der Funktionentheorie

Grundlegende Literatur:

wird in der Vorlesung angegeben

Empfohlene Vorkenntnisse:

Modul Analysis I + II

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Mecha	1011	
Semesterlage	Wintersemester	
Modulverantwortliche(r)	Institute der Experimentalphysik	
Lehrveranstaltungen (SWS)	Vorlesung Mechanik und Wärme Übung zu Mechanik und Wärme	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben	
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 6	Präsenzstudium (h): 90 Selbststudiu	m (h): 90

Die Studierenden haben eine anschauliche Vorstellung physikalischer Phänomene der Mechanik und Wärme gewonnen. Sie kennen die einschlägigen Gesetzmäßigkeiten und können diese mit Schlüsselexperimenten begründen. Die Studierenden sind mit der Bearbeitung von Beispielaufgaben der Mechanik und Wärme vertraut und können Aufgaben mit angemessenem Schwierigkeitsgrad eigenständig lösen.

Inhalte:

- Mechanik eines Massepunktes
- Newtonsche Axiome
- Arbeit, Energie und Potential
- Harmonischer Oszillator
- Systeme von Massepunkten, Stöße, Impulserhaltung
- Drehbewegung, Dynamik starrer, ausgedehnter Körper
- Bezugssysteme, Scheinkräfte
- Das 1/r²-Gesetz, Gravitation, Keplersche Gesetze
- Mechanische Schwingungen und Wellen
- · Reale feste und flüssige Körper, Oberflächenspannung, Reibung
- Strömende Flüssigkeiten und Gase, Bernoullische Gleichung
- Temperatur, ideales Gas, Wärmekapazität, Freiheitsgrade
- Transportvorgänge, Diffusion, Wärmeleitung
- Umwandlung von Energie, Hauptsätze, Zustandsänderungen, Kreisprozesse, Wärmekraftmaschinen, Entropie

Grundlegende Literatur:

	Demtröder,	Experimentalphysik	1, Mechanik und Wärme,	Springer Verlag
00				

Gerthsen, *Physik*, Springer Verlag

Tipler, *Physik*, Spektrum Akademischer Verlag

Feynman, Lectures on Physics, Band 1; Addison-Wesley Verlag

Empfohlene Vorkenntnisse:

Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)

Elektrizit	1012		
Semesterlage	Sommersemester		
Modulverantwortliche(r)	Institute der Experimentalphysik		
Lehrveranstaltungen (SWS)	Vorlesung Elektrizität und Relativität Übung zu Elektrizität und Relativität Grundpraktikum I: Mechanik, Thermodynamik und Elektrizität		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben und Laborübung	en	
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 12	Präsenzstudium (h): 150 Selbststudiu	ım (h): 210	

Die Studierenden verfügen über fundiertes Faktenwissen auf dem Gebiet der Elektrizitäts- und Relativitätslehre. Sie sind in der Lage die einschlägigen Gesetzmäßigkeiten herzuleiten und können diese mit Schlüsselexperimenten begründen. Die Studierenden können Aufgaben mit angemessenem Schwierigkeitsgrad eigenständig lösen. Die Studierenden sind mit den Grundprinzipien des Experimentierens vertraut. Sie kennen die Funktion und Genauigkeit verschiedener Messgeräte und sind mit computergestützter Datenerfassung vertraut. Sie sind in der Lage Messergebnisse in tabellarischer und graphischer Form übersichtlich darzustellen.

Inhalte:

Vorlesung und Übung:

- Elektrostatik, Coulomb-Gesetz, Multipole, Gauß-Satz. Kondensatoren
- Der elektrische Strom, Ohm'sches Gesetz, Kirchhoff'sche Regeln, Stokes-Satz, Ladungserhaltung
- Statische Magnetfelder, Biot-Savart-Gesetz, Permanentmagnete, Lorentz-Kraft, stationäre Maxmell-Gleichungen, Hall-Effekt
- Zeitlich veränderliche Felder, Induktion, Lenz'sche Regel, Wechselstrom, dynamische Maxwell-Gleichungen
- Magnetische und elektrische Eigenschaften von Materie, Maxwell-Gleichungen in Materie
- Elektromagnetische Schwingungen und die Entstehung elektromagnetischer Wellen, Energie des e.m. Feldes, Schwingkreise, Hertz'scher Dipol
- Elektromagnetische WellenWellen im Vakuum, Wellengleichung, Lichtgeschwindigkeit
- Elektromagnetische Wellen in Materie, Brechungsindex, Absorption, Dispersion
- Bewegte Bezugssysteme, Spezielle Relativitätstheorie, Michelson-Morley, Lorentz-Transformation, Doppler-Effekt, Addition von Geschwindigkeiten

Grundpraktikum I:

Mechanik

Mögliche Praktikumsexperimente: Energiesatz beim Pendel, Schwingungen, gekoppelte Pendel, Kreisel, Ultraschall, Akustik, Maxwellrad

Thermodynamik

Mögliche Praktikumsexperimente: Temperatur, Ideales Gas, Viskosität, spezifische Wärme, Wasserdampf, Temperaturstrahlung, Stirlingmotor, kritischer Punkt, Gasdruckfelder/Spezifische Wärme

Elektrizität

Mögliche Praktikumsexperimente: el. Widerstand, Schwingkreise, Transistor, Operationsverstärker, Kippschaltung, Rückkopplung, Membranmodell, Galvanometer, Oszilloskop, Rauschanalyse, Speicheroszilloskop

Grundlegende Literatur:

- Demtröder, Experimentalphysik 2, Elektrizität und Optik, Springer Verlag
- Gerthsen, *Physik*, Springer Verlag
- Tipler, *Physik*, Spektrum Akademischer Verlag
- Feynman, Lectures on Physics, Band 2; Addison-Wesley Verlag

Empfohlene Vorkenntnisse:

Vorlesungen Mechanik und Wärme und Mathematische Methoden der Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)

Optik, Atome, Mo	1013		
Semesterlage	Wintersemester		
Modulverantwortliche(r)	Institute der Experimentalphysik		
Lehrveranstaltungen (SWS)	Vorlesung Optik, Atome, Moleküle und Quantenphänomene Übung zu Optik, Atome, Moleküle und Quantenphänomene Grundpraktikum II: Optik und Atomphysik		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben und Laborübunge	n	
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 120 Selbststudium	m (h): 180	

Die Studierenden kennen die fundamentalen experimentellen Befunde und verstehen die zugrundeliegenden physikalischen Gesetzmäßigkeiten der Optik und Atomphysik. Die Studierenden sind in der Lage diese Gesetzmäßigkeiten eigenständig auf physikalische Problemstellungen anzuwenden.

Die Studierenden kennen die Funktion und Genauigkeit verschiedener Messgeräte und sind mit der Anpassung von Funktionen an Messdaten vertraut. Sie können angemessene Fehlerabschätzungen ausführen und beherrschen die Fehlerfortpflanzung.

Inhalte:

Optik, Atome, Moleküle und Quantenphänomene

- Geometrische Optik
- Komplexer Brechungsindex
- Optik an Grenzflächen
- Linsen und einfache optische Instrumente, Photometrie
- Polarisation, Doppelbrechung, optische Aktivität
- Interferenz, Beugung, Streuung
- Gauß'sche Optik, Resonatoren, Laser
- Schwarzkörperstrahlung, Photoeffekt, Compton-Effekt, Welle-Teilchen-Dualismus
- Wellenfunktion im Kastenpotential, Materiewellen, Schrödingergleichung, Tunneleffekt, Wasserstoffatom
- Die Struktur von Atomen, Bohr'sches Atommodell, Quantenzahlen, Pauli-Prinzip, Spin, Zeeman-Effekt, Feinstruktur, Spin-Bahn-Kopplung
- Auswahlregeln, Röntgenspektren, atomare Einheiten
- Atome mit mehreren Elektronen, Aufbau des Periodensystems
- Moleküle: chemische Bindung, Molekülpotential, Molekülorbitale, Vibration, Rotation, Franck-Condon-Prinzip

Grundpraktikum II: Optik und Atomphysik

mögliche Praktikumsexperimente: Linsen, Mikroskop, Michelson Interferometer, Mach-Zehnder Interferometer, Interferenz/Kohärenz, Beugung, Polarisation, Faraday Effekt, Prisma, Gitter, Fotoeffekt, Absorptionsspektroskopie, Emissionsspektrosakopie, Spektralapparat, Röntgenstrahlung

Grund	legend	le Lite	eratur
-------	--------	---------	--------

- Demtröder Experimentalphysik 2 und 3, Springer Verlag
- Berkeley Physikkurs
- Bergmann/Schäfer
- Haken, Wolf, Atom- und Quantenphysik, Springer Verlag

Empfohlene Vorkenntnisse:

Module Mechanik und Wärme, Elektrizität und Relativität

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)

Kerne, Teilchen, Festkörper 1014				
Semesterlage Sommersemester				
Modulverantwortliche(r)	Institute der Experimentalphysik			
Lehrveranstaltungen (SWS)	Vorlesung Kerne, Teilchen Übung zu Kerne, Teilchen Vorlesung Festkörper Übung zu Festkörper Grundpraktikum III: Kerne, Teilchen und Festkörper			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben und Labo	rübungen		
Notenzusammensetzung	-			
Leistungspunkte (ECTS): 10	Präsenzstudium (h): 120 Selbs	tstudium (h): 180		

Die Studierenden kennen die fundamentalen experimentellen Befunde und Gesetzmäßigkeiten der Struktur der Materie von Elementarteilchen bis zur Festkörperphysik. Sie verstehen die Bezüge zu den grundlegenden Gesetzmäßigkeiten der Mechanik, Elektrodynamik und Quantenmechanik.

Die Studierenden sind in der Lage diese Gesetzmäßigkeiten eigenständig auf physikalische Problemstellungen anzuwenden.

Die Studierenden beherrschen die Bedienung der üblichen Messgeräte. Sie sind in der Lage Messergebnisse sauber und vollständig zu protokollieren und diese kritisch zu hinterfragen.

Inhalte:

Kerne, Teilchen

- Begriffe Energien bei Kernen, Wirkungsquerschnitt, Schrödingergleichung, Heisenberg
- Radioaktiver Zerfall, Nuklidkarte, Kerneigenschaften Teilcheneigenschaften
- Starke KK, Bindungsenergie, Tröpfchenmodell
- alpha Zerfall inkl. Gamov
- Kernkräfte, Schalenmodell
- gamma Zerfall inkl. Übergänge
- schwache WW
- beta Zerfall inkl Fermi Theorie
- Neutronen, Moderation, Spaltung
- Kernreaktionen, kollektive Anregungen, Compound Kern
- Fusion
- Hadronen, Leptonen, Bosonen

Festkörper

- Die Struktur fester Körper, chemische Bindung in Festkörpern, Kristallstrukturen
- Beugung an periodischen Strukturen
- Dynamik der Kristallgitter, Gitterschwingungen, Phononen
- Thermische Eigenschaften von Festkörpern

Grundpraktikum III: Kerne, Teilchen und Festkörper

Grundlegende Literatur:

- Demtröder Experimentalphysik 2 und 3, Springer Verlag
- Berkeley Physikkurs
- Bergmann/Schäfer
- Haken, Wolf, Atom- und Quantenphysik sowie Molekülphysik und Quantenchemie, Springer Verlag

Empfohlene Vorkenntnisse:

Module Mechanik und Wärme, Elektrizität und Relativität, und Optik, Atome, Moleküle, Quantenphänomene

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Modulübergreifende Prüfung Experimentalphysik 1001			
Semesterlage Winter- und Sommersemester			
Modulverantwortliche(r)	Institute der Experimentalphysik		
Lehrveranstaltungen (SWS)	mündliche Prüfung		
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		
Gewicht: 2 (Physik) 28 (Meteorologie)			

Die Studierenden haben einen Überblick über die grundlegenden Bereiche der Experimentalphysik. Sie haben Parallelen und Querverbindungen der einzelnen Bereiche erkannt und können diese in einer wissenschaftlichen Diskussion darstellen. Die Studierenden haben eine Vorstellung von der Physik als Ganzes und ihren unterschiedlichen Ausprägungen auf verschiedenen Längen- und Energieskalen. Sie beherrschen den selbstständigen Wissenserwerb aus zum Teil englischen Fachbüchern.

Inhalte:

Physik:

- Mechanik und Wärme
- Elektrizität und Relativität
- Optik, Atome, Moleküle, Quantenphänomene
- Kerne, Teilchen, Festkörper

Meteorologie:

- Mechanik und Wärme
- Elektrizität und Relativität
- Optik, Atome, Moleküle, Quantenphänomene

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Physik:

Drei der Module "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene" und "Kerne, Teilchen, Festkörper"

Meteorologie:

Zwei der Module "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene"

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)

Mathematische Methoden der Physik			1111
Semesterlage	Wintersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)		Vorlesung Mathematische Methoden der Physik Übung zu Mathematische Methoden der Physik	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung Prüfungsleistung: Klausur		
Notenzusammensetzung	geht nicht in die Bachelornote	ein	
Leistungspunkte (ECTS): 7	Präsenzstudium (h): 7	5 Selbststudium	m (h): 135

Die Studierenden kennen die mathematischen Größen zur Beschreibung physikalischer Theorien. Sie sind in der Lage einfache physikalische Problemstellungen mathematisch zu formulieren und mit analytischen Verfahren sowie numerischen, computergestützten Verfahren zu lösen.

Inhalte:

- beschleunigte Koordinatensysteme: Scheinkräfte, Kinematik des starren Körpers
- Vektoren: Skalar- und Kreuzprodukt, Index-Schreibweise, Determinanten
- Raumkurven: Differenzieren, Kettenregel, Gradient, Frenet-Formeln
- gewöhnliche Differentialgleichungen: Lösungsverfahren
- Newtonsche Mechanik eines Massenpunkts, Systeme von Massenpunkten
- Tensoren: Matrizen, Drehungen, Hauptachsentransformation, Trägheitstensor

- harmonische Schwingungen: Normalkoordinaten, Resonanz
- Funktionen: Umkehrfunktion, Potenzreihen, Taylorreihe, komplexe Zahlen
- Integration: ein- und mehrdimensional, Kurven- und Oberflächenintegrale
- eindimensionale Bewegung: Lösung mit Energiesatz
- krummlinige Koordinaten: Integrationsmaß, Substitution, Delta-Distribution
- Programmierung einfacher numerischer Verfahren zur Lösung und Visualisierung physikalischer Probleme

Grundlegende Literatur:

- Feynman, Lectures on Physics, Band 1+2, Addison-Wesley Verlag
- Großmann, Mathematischer Einführungskurs für die Physik, Teubner 2000
- Nolting, Grundkurs Theoretische Physik 1 Klassische Mechanik, Springer

Empfohlene Vorkenntnisse:

• Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)

Theoretisch	1111		
Semesterlage	Sommersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	Vorlesung Theoretische Elektrodynamik Übung zu Theoretische Elektrodynamik		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übung oder Klausur Prüfungsleistung: keine		
Notenzusammensetzung	geht nicht in die Bachelornote ein		
Leistungspunkte (ECTS): 7 Präsenzstudium (h): 75 Selbststudium (h): 135			

Die Studierenden kennen die mathematischen Größen zur Beschreibung physikalischer Theorien. Sie sind in der Lage einfache physikalische Problemstellungen mathematisch zu formulieren und mit analytischen Verfahren sowie numerischen, computergestützten Verfahren zu lösen.

Die Studierenden haben die logische Struktur der Elektrodynamik verstanden und kennen die mathematische Formulierung der Gesetzmäßigkeiten. Sie kennen prominente Phänomene der Elektrodynamik und können diese aus den Grundgleichungen herleiten. Die Studierenden sind in der Lage analytische Lösungswege für Probleme der Elektrodynamik zu finden sowie geeignete mathematische und physikalische Näherungen bei der Lösung ausgewählter Problemstellungen zu machen.

Inhalte:

- Vektorfelder: Vektoranalysis, Integralsätze, Laplace-Operator
- Maxwell-Gleichungen: integrale Form, Anfangsund Randwerte, Grenzflächen
- Potentiale, Eichfreiheit, Vakuum-Lösung, Lösung mit Quellen, Retardierung
- lineare partielle Differentialgleichungen: Separation, Greensche Funktion
- Fourier-Analysis: Funktionenräume, Fourier-Reihen, Fourier-Transformation
- Elektrostatik: Randwertprobleme, Potentialtheorie, Multipol-Entwicklung
- Magnetostatik: fadenförmige Stromverteilungen, Feldenergie
- bewegte Punktladungen, Lienard-Wiechert-Potentiale
- elektromagnetische Wellen: im Vakuum, Einfluss der Quellen, Abstrahlung
- Elektrodynamik in Medien
- Programmierung einfacher numerischer Verfahren zur Lösung und Visualisierung physikalischer Probleme

Grundlegende Literatur:

- Landau-Lifschitz, Lehrbuch der Theoretischen Physik, Band II, Harri
- J.D. Jackson, Klassische Elektrodynamik, Gruyter, Walter de GmbH
- Römer & Forger, Elementare Feldtheorie, Wiley
- Nolting, Grundkurs Theoretische Physik 3 Elektrodynamik, Springer

Empfohlene Vorkenntnisse:

- Mathematische Methoden der Physik
- Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Bachelorstudiengang Physik (Kernmodul)

Bachelorstudiengang Meteorologie (Kernmodul)

Analytische Mechanik	1112		
Semesterlage	Wintersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	Vorlesung Analytische Mechanik und Spezielle Relativitätstheorie Übung zu Analytische Mechanik und Spezielle Relativitätstheorie		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 90 Selbst	studium (h): 150	

Die Studierenden haben die logische Struktur der klassischen Mechanik und der Speziellen Relativitätstheorie verstanden und kennen die mathematischen Formulierungen der Gesetzmäßigkeiten. Sie kennen prominente Beispiele der Gebiete und können diese aus den Grundgleichungen herleiten. Die Studierenden sind in der Lage analytische Lösungswege für ausgewählte Probleme zu finden sowie geeignete mathematische und physikalische Näherungen bei der Lösung zu machen.

Inhalte:

- Lagrange-Mechanik: Zwangsbedingungen, Multiplikatoren, Lorentz-Kraft
- Variationsrechnung: Funktionalableitung, Extrema mit Nebenbedingungen
- Wirkungsprinzip, Noether-Theorem, Erhaltungssätze
- Dynamik des starren Körpers: Euler-Gleichungen, Kreisel, Präzession, Nutation
- Hamiltonsche Mechanik: Legendre-Transformation, kanonische Gl., Erhaltungssätze
- kanonische Transformationen: Phasenportrait, symplektische Struktur, Invarianten
- kovariante Formulierung von Maxwell & Lorentz, Lagrangedichte, Erhaltungssätze
- spezielle Relativität: Kinematik, Dynamik von Massenpunkten, Vierer-Notation

Grundle	gende	Literatur:
---------	-------	------------

- Honerkamp & Römer, Klassische Theoretische Physik, Springer
- Landau-Lifschitz, Lehrbuch der Theoretischen Physik, Band I, Harri
- H. Goldstein, Poole & Safko, Classical Mechanics, Wiley-VCH Verlag GmbH & Co
- L.N. Hand and J. D. Finch, *Analytical Mechanics*, Cambridge University Press
- Römer + Forger, *Elementare Feldtheorie*, Wiley-VCH
- Arnold, Classical Mechanics, Springer

Empfohlene Vorkenntnisse:

• Mathematische Methoden der Physik und Theoretische Elektrodynamik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Modulübergreifende Prüfung Theoretische Physik I			1101	
Semesterlage	Winter- und Sommersemester			
Modulverantwortliche(r)	Institut für Theoretische Physik	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	mündliche Prüfung			
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung	9		
Notenzusammensetzung	Note der mündlichen Prüfung			
Gewicht: 1	1 Präsenzstudium (h): - Selbststudium (h): -		h): -	

Die Studierenden haben einen fundierten Überblick über die Gebiete der klassischen Mechanik, der speziellen Relativitätstheorie und der Elektrodynamik. Sie verstehen die Gebiete als Teile eines zusammenhängenden Theoriengebäudes und können Parallele in der logischen Struktur der Gebiete aufzeigen. Sie beherrschen den selbstständigen Wissenserwerb aus zum Teil englischen Fachbüchern.

Inhalte:

- Theoretische Elektrodynamik
- Analytische Mechanik und spezielle Relativitätstheorie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Die beiden Module Mathematische Methoden der Physik und Theoretische Elektrodynamik oder das Modul Analytische Mechanik und Spezielle Relativitätstheorie

Verwendbarkeit:

• Bachelorstudiengang Physik (Kernmodul)

Einführung i	1113		
Semesterlage	Sommersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	Vorlesung Einführung in die Quantentheorie Übung zu Einführung in die Quantentheorie		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 90 Selbststudiu	ı m (h): 150	

Die Studierenden beherrschen den mathematischen Apparat der Quantentheorie. Sie verstehen die physikalischen Konsequenzen der Quantentheorie und kennen den Zusammenhang zur klassischen Physik. Sie sind in der Lage den mathematischen Formalismus der Quantentheorie auf ausgewählte Probleme eigenständig anzuwenden. Sie sind mit störungstheoretischen Konzepten vertraut.

Inhalte:

- Photonen als einfache Quantensysteme, Bewegung von Teilchen, Schrödingergleichung
- Hamilton-Formalismus: Postulate, Transformationen, Zeitentwicklungsbilder
- Einfache Systeme: Oszillator, Potentialschwelle, Potentialtopf, periodisches Potential
- Drehimpuls: Symmetrien, Drehimpulsalgebra, Darstellungen, Addition von Drehimpulsen, Spin
- Zentralpotential: Separation der Schrödinger-Gleichung, Coulomb-Potential
- Näherungsverfahren: zeitunabhängige und zeitabhängige Störungstheorie, Variationsverfahren, Semiklassik, Anwendungen
- Mehrteilchensysteme: identische Teilchen, Fock-Raum, Hartree-Fock, Moleküle, Quantenfeld

Grundlegende Literatur:

- F. Schwabl, *Quantenmechanik*, Springer
- J.J. Sakurai, Modern Quantum Mechanics, Pearson
- Peres, *Quantum Theory: Concepts and Methods*, Springer
- L.D. Landau, E.M. Lifshitz, *Theoretische Physik*, Bd V+VI, Harri

Empfohlene Vorkenntnisse:

Mathematische Methoden, Theoretische Elektrodynamik, Analytische Mechanik und Spezielle Relativitätstheorie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Stati	1114		
Semesterlage	Wintersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	Vorlesung Statistische Physik Übung zu Statistische Physik		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 90 Selbststudi	um (h): 150	

Die Studierenden beherrschen die mathematische Beschreibung der Hauptsätze. Sie sind in der Lage die Konzepte der Statistischen Physik auf die Gebiete der klassischen Physik wie auch der Quantentheorie anzuwenden. Sie kennen prominente Beispiele und können diverse mathematisch behandeln.

Inhalte:

- Grundlegende Konzepte in der statistischen Mechanik: Wahrscheinlichkeitstheorie, statistische Ensembles, Zustandssumme, Dichtematrix, Entropie
- Ideale Gase: mehratomige Gase, Fermi-Gas, Bose-Gas, nichtwechselwirkende Spins, Quasiteilchen
- Phänomenologische Theorie (Thermodynamik): Hauptsätze der Thermodynamik, Wärmemaschinen, irreversible Prozesse, thermodynamische Potentiale und Relationen
- Wechselwirkende Systeme: Molekularfeldtheorie, Monte-Carlo Simulationen, Ising Modell, Perkolation, reale Gase, Phasenübergänge
- Nichtgleichgewichts-Statistik: Fluktuationen, Brownsche Bewegung, kinetische Gleichungen, Transport

Grundlegende Literatur:

- L.P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, World Scientific Pub Co
- C. Kittel, H. Krömer, *Thermodynamik*, Oldenbourg
- L.D. Landau, E.M. Lifshitz, *Theoretische Physik*, Bd V+VI, Harri
- F. Schwabl, *Statistische Physik*, Springer

Empfohlene Vorkenntnisse:

Analytische Mechanik und Spezielle Relativitätstheorie, Einführung in die Quantentheorie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Modulübergreifende Prüfung Theoretische Physik II 1102			
Semesterlage	Winter- und Sommersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	mündliche Prüfung		
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		
Gewicht:	1		

Die Studierenden haben einen Überblick über die Gebiete der Mechanik, Elektrodynamik, Quantenmechanik und Statistische Physik. Sie verstehen diese Gebiete als Teilgebiete eines umfassenden physikalischen Theoriengebäudes. Sie verstehen die Gemeinsamkeiten der Gebiete hinsichtlich der physikalischen Konzepte und mathematischen Methoden wie die Abgrenzungen der Gebiete auf unterschiedlichen Längen und Energieskalen. Sie beherrschen den selbstständigen Wissenserwerb aus zum Teil englischen Fachbüchern.

Inhalte:

- Einführung in die Quantentheorie
- Statistische Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Eines der Module Einführung in die Quantentheorie oder Statistische Physik sowie die Modulübergreifende Prüfung Theoretische Physik I

Verwendbarkeit:

• Bachelorstudiengang Physik (Kernmodul)

Physi	1611		
Semesterlage	Winter- und Sommersemester		
Modulverantwortliche(r)	Institute der Physik		
Lehrveranstaltungen (SWS)	Proseminar		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Seminarleistung		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 3	Präsenzstudium (h): 30 Selbststudiu	m (h): 60	

Die Studierenden sind in der Lage sich unter Anleitung in ein vorgegebenes Thema einzuarbeiten. Sie können eigenständig Literatur recherchieren und einen Vortrag strukturieren und halten.

Sie kennen gängige Präsentations- und Visualisierungstechniken. Die Studierenden beherrschen die deutsche Fachsprache in freier Rede.

Inhalte:

- physikalische Themen (Auswahl aus einem vom Dozenten vorgegeben Themenfeld)
- Vorbereitung einer Präsentation
- Erfolgsfaktoren einer verständlichen Präsentation
- Visualisierungsmedien wirksam einsetzen
- Umgang mit Lampenfieber
- Wissenschaftliche Diskussion

Grundlegende Literatur:

Wird zum jeweiligen Thema benannt

Empfohlene Vorkenntnisse:

• In Absprache mit den Dozenten

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Physik (Kernmodul)

Bachelor Physik - Vertiefungsbereich

Einführung i	1211		
Semesterlage	Wintersemester		
Modulverantwortliche(r)	Institut für Festkörperphysik		
Lehrveranstaltungen (SWS)	Vorlesung Einführung in die Festkörperphysik Übung zu Einführung in die Festkörperphysik Praktikum zur Einführung in die Festkörperphysik		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungen und Laborübung		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 105 Selbststudi	um (h): 135	

Kompetenzziele:

Die Studierenden verstehen die grundlegenden Konzepte der Festkörperphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Kristalle und Kristallstrukturen
- reziprokes Gitter
- Kristallbindung
- Gitterschwingungen, thermische Eigenschaften, Quantisierung, Zustandsdichte
- Fermigas
- Energiebänder
- Halbleiter, Metalle, Fermiflächen
- Anregungen in Festkörpern
- experimentelle Methoden: Röntgenbeugung, Rastersonden- und Elektronenmikroskopie, Leitfähigkeit, Magnetowiderstand, Halleffekt, Quantenhalleffekt

Grundlegende Literatur:

- Ashcroft and Mermin, Solid State Physics, Oldenbourg
- C. Kittel, Einführung in die Festkörperphysik, Oldenbourg
- K. Kopitzki, Einführung in die Festkörperphysik, Vieweg+Teubner
- H. Ibach, H. Lüth, Festkörperphysik, Springer

Empfohlene Vorkenntnisse:

 Module "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene" und "Kerne, Teilchen, Festkörper"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Physik (Vertiefungsmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Atom-	1311			
Semesterlage	Wintersemester	Wintersemester		
Modulverantwortliche(r)	Institut für Quantenoptik	Institut für Quantenoptik		
Lehrveranstaltungen (SWS)	Vorlesung Atom- und Molekülphysik Übung Atom- und Molekülphysik Praktikum Laborpraktikum Atom- und Molekülphysik			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungen und Laborübung			
Notenzusammensetzung	-			
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 105 Selbs	ststudium (h): 135	5	

Die Studierenden verstehen die grundlegenden Konzepte der Atom- und Molekülphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Zusammenfassung H-Atom
- Atome in statischen elektrischen und magnetischen Feldern
- Fein-/Hyperfeinstrukturen atomarer Zustände
- Wechselwirkung mit dem EM Strahlungsfeld
- Mehrelektronensysteme
- Atomspektren/Spektroskopie
- Vibration und Rotation von Molekülen
- Elektronische Struktur von Molekülen
- Dissoziation und Ionisation von Molekülen
- Ausgewählte Experimente der modernen Atom- und Molekülphysik

Grundlegende Literatur:

T Move	r Kuaku	ak Ata	mnhucik	Teubner.	1004
I. IVIAVE	r-Kucku	CK. ATOI	mpnvsik.	Teubher.	1994

- B. Bransden, C. Joachain, *Physics of Atoms and Molecules*, Longman 1983
- H. Haken, H. Wolf, Atom- und Quantenphysik sowie Molekülphysik und Quantenchemier, Springer
- R. Loudon, The Quantum Theory of Light, OUP, 1973
- W. Demtröder, Molekülphysik, Oldenbourg, 2003 ISBN: 3486249746

Empfohlene Vorkenntnisse:

• Module "Einführung in die Quantentheorie" oder "Thoretische Physik C" und "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene" und "Kerne, Teilchen, Festkörper"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Bachelorstudiengang Physik (Vertiefungsmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)

Koh	1312		
Semesterlage	Sommersemester		
Modulverantwortliche(r)	Institut für Quantenoptik		
Lehrveranstaltungen (SWS)	Vorlesung Kohärente Optik Übung zu Kohärente Optik Laborpraktikum Kohärente Optik		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungen und Laborübung		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 105 Selbststud	ium (h): 135	

Die Studierenden verstehen die grundlegenden Konzepte der Kohärenten Optik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Maxwellgleichungen und EM Wellen
- Wellenoptik, Matrixoptik (ABCD, Jones, Müller, Streu, Transfer...)
- Beugungstheorie, Fourieroptik
- Resonatoren, Moden
- Licht-Materie-Wechselwirkung (klassisch / halbklassisch, Bloch-Modell)
- Ratengleichungen, Laserdynamik
- Lasertypen, Laserkomponenten, Laseranwendungen
- Modengekoppelte Laser
- Einmodenlaser
- Laserrauschen/-stabilisierung
- Laserinterferometrie
- Modulationsfelder und Homodyndetektion

Grund	legende	Literatur:
-------	---------	------------

Meschede, Optik, Licht und Laser, Teubner Verlag
Menzel, <i>Photonik</i> , Springer
Born/Wolf, Principles of Optics, Pergamon Press

- Kneubühl/Sigrist, Laser, Teubner Reider, *Photonik*, Springer
- Yariv, Hecht, Siegmann
- Originalliteratur

Empfohlene Vorkenntnisse:

Module "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene" und "Kerne, Teilchen, Festkörper"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Bachelorstudiengang Physik (Vertiefungsmodul)

Modulübergreifende Prüfung Vertiefungsbereich 1002			
Semesterlage	Winter- und Sommersemester		
Modulverantwortliche(r)	Institute der Experimentalphysik		
Lehrveranstaltungen (SWS)	mündliche Prüfung		
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		
Gewicht:	1		

Die Studierenden verstehen die grundlegenden Konzepte zweier fortgeschrittener Gebiete der Physik. Sie kennen die Beziehungen der Gebiete zueinander und sind in der Lage Auswirkungen neuer Erkenntnisse eines Gebietes auf das jeweils andere aufzuzeigen.

Inhalte: Zwei der Module:

- Einführung in die Festkörperphysik
- Atom und Molekülphysik
- Kohärente Optik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Modulübergreifende Prüfung Experimentalphysik

Verwendbarkeit:

• Bachelorstudiengang Physik (Vertiefungsmodul)

Bachelor Physik -- Wahlbereich

Moderne	1601		
Semesterlage	Wintersemester und Sommersemester		
Modulverantwortliche(r)	Institute der Physik		
Lehrveranstaltungen (SWS)	Auswahl von Lehrveranstaltungen im Umfang von mind. 12 LP gemäß Vorlesungsverzeichnis bzw. nach Lehrveranstaltungs-katalog (s.u.)		
Leistungsnachweis zum Erwerb der LP	Studienleistung: gemäß §6 der Prüfungsordnung Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		
Leistungspunkte (ECTS): 12 Gewicht: 1	Präsenzstudium (h): 240 Selbststudium (h): 240		

Kompetenzziele:

Die Studierenden haben vertiefte Kenntnisse in ausgewählten Spezialgebieten der Physik. Sie sind in der Lage neu erworbenes Wissen in das logische Gedankengebäude der Physik einzuordnen. Die Studierenden sind in der Lage englischsprachige Fachliteratur zu verstehen.

Inhalte:

Weiterführende Veranstaltungen der Physik nach Wahl der Studierenden.

Die Prüfungsleistung erstreckt sich über Lehrveranstaltungen im Umfang von mindestens 4 LP nach Wahl der Studierenden.

Grundlegende Literatur:

Wird in den Veranstaltungen bekannt gegeben.

Empfohlene Vorkenntnisse:

Grundvorlesungen der Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Physik (physikalische Wahlmodul)

Schlüs	????		
Semesterlage	Winter- und Sommersemester		
Modulverantwortliche	Studiendekanat		
Lehrveranstaltungen (SWS)	Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums oder des Zentrums für Schlüsselkompetenzen und entsprechend ausgewiesenen Angeboten der Fakultäten sowie Computerkurse aus dem Angebot des Rechenzentrums.		
Leistungsnachweis zum Erwerb der LP	Studienleistung: gemäß §6 der Prüfungsordnung		
Notenzusammensetzung			
Leistungspunkte (ECTS): 2-4	Präsenz- und Selbststudium (h): 60-120		

• Sie erlernen und beherrschen exemplarische Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltung

Inhalte:

• Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung

Grundlegende Literatur:

• Wird in der Lehrveranstaltung angegeben

Empfohlene Vorkenntnisse:

Keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Physik

Bachelor Meteorologie - Kernmodule

Die Modulbeschreibung für die Kernmodule "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene", "Modulübergreifende Prüfung Experimentalphysik" und "Mathematische Methoden der Physik/ Theoretische Elektrodynamik" befinden sich in dem Abschnitt Bachelor Physik – Kernmodule (Ab Seite 4).

Lineare Algebra A		2550
Semesterlage	Winter- und Sommersemester	
Modulverantwortliche(r)	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie	
Lehrveranstaltungen (SWS)	Vorlesung Lineare Algebra A Übung zu Lineare Algebra A	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu Lineare Algebra A Prüfungsleistung: Eine unbenotete Klausur	
Notenzusammensetzung	-	
Leistungspunkte (ECTS):	Präsenzstudium (h): 45 Selbststudium	m (h): 75

Kompetenzziele:

Grundlegendes Verständnis für mathematische Denkweisen und ihre Anwendung auf verschiedenartige Probleme. Sicherer Umgang mit linearen Gleichungssystemen und den zugehörigen Lösungsmethoden und Kenntnisse der zugrundeliegenden linearen Strukturen. Ausdrucksfähigkeit in der Darstellung mathematischer Argumentationen, Kenntnis der dazu geeigneten Methoden. Fähigkeit, das theoretische Wissen anhand Aufgaben umzusetzen.

Inhalte:

- Grundlegende Eigenschaften von Vektorräumen (Basis und Dimension);
- lineare Abbildungen und Matrizen;
- lineare Gleichungssysteme mit Lösungsverfahren (Gauß-Algorithmus);

Grundlegende Literatur:

G. Fischer: *Lineare Algebra*

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Meteorologie (Kernmodul)

Lineare Algebra B 2550			
Semesterlage	Winter- und Sommersemester		
Modulverantwortliche(r)	Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie		
Lehrveranstaltungen (SWS)	Vorlesung Lineare Algebra B Übung zu Lineare Algebra B		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu Lineare Algebra B Prüfungsleistung: Eine unbenotete Klausur		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 4	Präsenzstudium (h): 45 Selbststudiu	m (h): 75	

Grundlegendes Verständnis für mathematische Denkweisen und ihre Anwendung auf verschiedenartige Probleme. Sicherer Umgang mit linearen Gleichungssystemen und den zugehörigen Lösungsmethoden und Kenntnisse der zugrundeliegenden linearen Strukturen. Ausdrucksfähigkeit in der Darstellung mathematischer Argumentationen, Kenntnis der dazu geeigneten Methoden. Fähigkeit, das theoretische Wissen anhand von Aufgaben umzusetzen.

Inhalte:

- Determinanten, Diagonalisierbarkeit;
- Euklidische Räume, Quadriken.

Grundlegende Literatur:

G. Fischer: *Lineare Algebra*

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Meteorologie (Kernmodul)

Bachelorstudiengang Meteorologie (Kernmodul)

Analysis A 2551				
Semesterlage	Winter- und Sommersemester			
Modulverantwortliche(r)	Modulverantwortliche(r) Institut für Analysis			
Vorlesung "Analysis A" Übung zu "Analysis A"				
Leistungsnachweis zum Erwerb der LP Studienleistung: Übungsaufgaben zu Analysis A Prüfungsleistung: Eine unbenotete Klausur				
Notenzusammensetzung	-			
Leistungspunkte (ECTS): 5	Präsenzstudium (h): 60	Selbststudiun	n (h): 90	
Kompetenz im Umgang mit mathematischer Sprache. Grundlegendes Verständnis für korrekte Lösung mathematischnaturwissenschaftlicher Aufgaben mit Hilfe von Konvergenzbetrachtungen, Differentiation und Integration. Fähigkeiten in selbständiger Anwendung entsprechender Methoden und verschiedener Beweistechniken. Teamfähigkeit durch Bearbeitung von Aufgaben in Gruppen und deren Besprechung in der Übung. Inhalte: Reelle und komplexe Zahlen, Konvergenz von Folgen und Reihen, Funktionenfolgen und Potenzreihen, Stetigkeit und Differenzierbarkeit von Funktionen einer reellen Variablen, Mittelwertsatz und seine Folgerungen, Taylorformel, Riemann Integral und die Fundamentalsätze der Analysis				
Riemann Integral und die Fundamentalsätze der Analysis. Grundlegende Literatur: H. Amann & J. Escher: Analysis I und II, Birkhäuser Verlag, 2002 O. Forster: Analysis 1 und 2, Vieweg+Teubner K. Meyberg & P. Vachenauer: Höhere Mathematik 1, Springer-Verlag 2001 Empfohlene Vorkenntnisse:				
ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine				
Verwendbarkeit:				

	Analysis B			2551
Semesterlage	Winter- und Sommersem	ester		
Modulverantwortliche(r)	odulverantwortliche(r) Institut für Analysis			
Lehrveranstaltungen (SWS) Vorlesung "Analysis B" Übung zu "Analysis B"				
Leistungsnachweis zum Erwerb der LP Studienleistung: Übungsaufgaben zu Analysis B Prüfungsleistung: Eine unbenotete Klausur				
Notenzusammensetzung -				
Leistungspunkte (ECTS): 5	Präsenzstudium (h):	60	Selbststudium	(h): 90
Differentialgleichungen. Fähigkeiten in selbständiger Anwendung entsprechender Methoden und verschiedener Beweistechniken. Teamfähigkeit durch Bearbeitung von Aufgaben in Gruppen und deren Besprechung in der Übung. Inhalte: Normierte Räume, Differentialrechnung für Funktionen in mehreren Veränderlichen, totale Ableitung und Richtungsableitung, Satz über implizite und inverse Funktion, mehrdimensionale Taylorsche Formel, Extrema unter				
Nebenbedingungen, Grundlagen der Vektoranalysis, gewöhnliche Differentialgleichungen, mehrdimensionale Integration.				
Grundlegende Literatur: H. Amann & J. Escher: Analysis I und II, Birkhäuser Verlag, 2002 O. Forster: Analysis 1 und 2, Vieweg+Teubner K. Meyberg & P. Vachenauer: Höhere Mathematik 1, Springer-Verlag 2001 Empfohlene Vorkenntnisse:				

Verwendbarkeit:

Bachelorstudiengang Meteorologie (Kernmodul)

Angewa	andte Mathematik 2552			
Semesterlage	Winter- und Sommersemester			
Modulverantwortliche(r)	Institut für Mathematische Stochastik, Institut für Angewandte Mathematik			
Lehrveranstaltungen (SWS)	Vorlesung "Numerische Mathematik A" Übung zu "Numerische Mathematik A" Vorlesung "Stochastik A" Übungen zu Stochastik A Statt VL und UE "Stochastik A" kann auch die Veranstaltung Umweltdatenanalyse gewählt werden			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu Numerische Mathematik A und Stochastik A Prüfungsleistung: Jeweils eine Klausur zu Numerische Mathematik A und Stochastik A			
Notenzusammensetzung	Note der 2 Klausuren (zu je gleichem Gewicht)			
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 90 Selbststudium (h): 150			

Kenntnis numerischer Methoden zur näherungsweisen Lösung einfacher mathematischer Problemstellungen. Einschätzung der Eignung verschiedener Methoden je nach Gegebenheit und der Grenzen der Anwendbarkeit numerischer Methoden.

Sicherer Umgang mit stochastischen Methoden und statistischen Fragestellungen.

Wissen über Grundlagen der Kombinatorik, Wahrscheinlichkeitstheorie und statistische Methoden. Verständnis der Modelle, Beherrschung elementarer stochastischer Denkweisen. Fähigkeit zur mathematischen Beschreibung und Analyse einfacher zufallsabhängiger Problemstellungen und zum Lösen einfacher Aufgaben mit Präsentation in der Übung.

Inhalte:

Numerische Mathematik A:

- Interpolation von Funktionen durch Polynome und Splines
- Quadraturformeln zur numerischen Integration,
- direkte Verfahren für lineare Gleichungssysteme
- iterative Verfahren für lineare Gleichungssysteme
- Newton-Verfahren für nichtlineare Gleichungssysteme
- Kondition mathematischer Problemstellungen und Stabilität numerischer Algorithmen

Stochastik A:

- Wahrscheinlichkeitsräume
- Laplace-Experimente
- bedingte Wahrscheinlichkeiten und Unabhängigkeit,
- Zufallsgrößen und ihre Verteilungen,
- Zentrale Grenzwertsatz

Grundlegende Literatur:

- Quarteroni, R. Sacco, F. Saleri: Numerische Mathematik I und II. Springer-Verlag.
- Georgii, H.: Stochastik, de Gruyter

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Meteorologie (Kernmodul)

Pro	2553		
Semesterlage	Sommersemester		
Modulverantwortliche(r)	Institut für Meteorologie und Klimatol	ogie	
Lehrveranstaltungen (SWS)	Vorlesung Angewandtes Programmieren Übung zu Angewandtes Programmieren		
Leistungsnachweis zum Erwerb der LP	Studienleistungen: Übungsaufgaben		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 4	Präsenzstudium (h): 45	Selbststudium (h):	

Die Studierenden beherrschen die Grundlagen des Programmierens in einer höheren Programmiersprache und können diese bei der Entwicklung eigener Programme zum Lösen einfacher Probleme selber anwenden (Methodenkompetenz).

Inhalte:

- Bausteine von Programmen: Anwendungsfolgen, Schleifen, Alternativen
- Programmablaufpläne, Struktogramme
- Sprachelemente von FORTRAN95: Datentypen, Felder, Ausdrücke, Feldausdrücke, IF-, CASE-, DO-Strukturen
- formatierte und unformatierte Ein-/Ausgabe, NAMELIST I/O
- Programmeinheiten: Unterprogramme, Module, Interfaces

Grundlegende Literatur:

Metcalf, M. und J. Reid: FORTRAN 90/95 Explained. Oxford University Press.

Empfohlene Vorkenntnisse: keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Bachelorstudiengang Meteorologie (Kernmodul)

Einführung	2560		
Semesterlage	Sommer- und Wintersemester		
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie		
Lehrveranstaltungen (SWS)	Vorlesung Einführung in die Meteorologie I Übung zu Einführung in die Meteorologie I Vorlesung Einführung in die Meteorologie II Übung zu Einführung in die Meteorologie II		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu Einführung in die Meteorologie I und II Prüfungsleistung: Jeweils eine Klausur zur Einführung in die Meteorologie I und II		
Notenzusammensetzung	Note der zwei Klausuren mit je gleichem Gewicht		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 90 Selbststudium (h): 150		

Die Studierenden haben nach Abschluss des Zyklus einen Überblick über Meteorologie und Umweltphysik, sodass Kompetenzen für die spätere Einordnung weiterführender Vorlesungen in das Studium erlangt werden können. Die Übungen fördern auch die Kommunikationsfähigkeit und die Methodenkompetenz bei der Umsetzung von Fachwissen.

Inhalte:

Einführung in die Meteorologie I:

Die Atmosphäre und das Erdsystem. Wetter und Klima. Atmosphärische Skalen. Die wichtigsten physikalischen Größen zur Beschreibung der Atmosphäre; ihre typischen räumlichen Verteilungen und Messverfahren. Zudem Grundlagen solarer und terrestrischer Strahlung. Die chemische Zusammensetzung der Luft, Wasserdampf, Ozon einschließlich der Mechanismen für die Entstehung des Ozonlochs, die Treibhausgase und Treibhauseffekt, der Wasserkreislauf und der Massenkreislauf verschiedener Spurenstoffe.

Einführung in die Meteorologie II:

Grundlagen der Aerosole, Wolken und des Niederschlags. Stoff-, Impuls-, und Energieflüsse im Erdsystem. Energieumwandlungen, Thermodynamische Grundgleichungen, meteorologische Beobachtungssysteme sowie internationale Messnetze, Energiemeteorologie

Grundlegende Literatur	Grund	legend	e Lite	ratur
------------------------	-------	--------	--------	-------

Kraus, Die Atmosphäre der Erde: Eine Einführung in die Meteorologie, Springer
Hauf, Seckmeyer, Skript zur Vorlesung Einführung in die Meteorologie I
Hauf, Seckmeyer, Skript zur Vorlesung Einführung in die Meteorologie II
Häckel, Meteorologie, UTB, Stuttgart
Roedel, <i>Physik unserer Umwelt</i> , Springer
Liljeguist, Allgemeine Meteorologie, Springer

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Bachelor Geographie
- Master Landschaftsarchitektur
- Bachelor und Master Physik

Strahlung 2003			
Semesterlage	Sommersemester und Wintersemester		
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie		
Lehrveranstaltungen (SWS)	Vorlesung Strahlung I Vorlesung Strahlung II Übung zu Strahlung I Übung zu Strahlung II		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungen jeweils zu Strahlung I, Strahlung II Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 90 Selbststudium (h): 150		

Die Studierenden haben vertiefte physikalische und meteorologische Kenntnisse im Bereich der solaren Strahlung und können diese in Beispielen selber anwenden. Sie kennen grundlegende Messmethoden der Strahlungsphysik im optischen Bereich und deren Qualitätssicherung sowie Qualitätskontrolle. Die theoretischen und experimentellen Übungen fördern auch die Kommunikationsfähigkeit und die Methodenkompetenz bei der Umsetzung von Fachwissen.

Inhalte:

- grundlegende Begriffe der Strahlungsphysik, Strahlungsprozesse in der Atmosphäre
- Messmethoden der Strahlungsphysik
- Grundlagen der Lichttechnik
- Astronomische, Chemische, Biologische und medizinische Grundlagen
- Verfahren zur Berechnung des Strahlungstransfers in der Atmosphäre

Grundlegende Literatur:

- Seckmeyer et al., *Instruments to measure solar ultraviolet radiation, Parts 1–4*: WMO-GAW reports, No.126, 2001, No. 164, 2006, No. 190, 2010, No. 191, 2011
- Seckmeyer, Skript zur Vorlesung Strahlung
- Bergmann-Schäfer, Band 3 *Optik*, Gruyter

Empfohlene Vorkenntnisse:

• Modul Einführung in die Meteorologie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Master Studienfach optische Technologien
- Bachelor und Master Physik

Wolkenphysik 2011			
Semesterlage	Sommersemester		
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie		
Lehrveranstaltungen (SWS)	Vorlesung Wolkenphysik Übung zu Wolkenphysik		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungen Prüfungsleistung: mündliche Prüfung		
Notenzusammensetzung	Note der mündlichen Prüfung		
Leistungspunkte (ECTS): 4	Präsenzstudium (h): 45 Selbststudium (h): 75		

Die Studierenden haben vertiefte physikalische Kenntnisse in Wolkenphysik und können diese in Beispielen selber anwenden. In den theoretischen und experimentellen Übungen oder beim Erarbeiten eines Vortrages wird die Methodenkompetenz bei der Umsetzung von Fachwissen gefördert aber auch die Kommunikationsfähigkeit.

Inhalte:

- Die Bedeutung der Wolken für Klima, Luftreinhaltung, Niederschlagsbildung, Strahlungs- und Energiehaushalt; der internationale Wolkenatlas
- Theoretische Grundlagen, Strahlung und Wolken, optische Effekte
- Die beobachtete mikrophysikalische Struktur von Wolken
- Der allgemeine Wolken- und Niederschlagsbildungsprozess
- Wolkendynamik und Wolkenmodellierung, wolkenphysikalische Messgeräte

Grundlegende Literatur:

- Pruppacher und Klett, Microphysics of Clouds and Precipitation, Springer
- Rogers, Cloud Physics A Butterworth-Heinemann Title; 3 edition,

Empfohlene Vorkenntnisse:

- Modul Einführung in die Meteorologie
- Vorlesung und Übung Thermodynamik und Statik (im Modul Theoretische Meteorologie)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Bachelor und Master Physik

Instrumentenpraktikum 2102				
Semesterlage	Wintersemester			
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie			
Lehrveranstaltungen (SWS)	Praktikum Instrumentenpraktikum			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Laborübung			
Notenzusammensetzung	-			
Leistungspunkte (ECTS): 6	Präsenzstudium (h): 90 Selbststudiu	m (h): 90		

Die Studierenden kennen die grundlegenden meteorologischen Messmethoden und können diese selber praktisch anwenden, wobei die kritische Beurteilung von Messergebnissen hinsichtlich ihrer Aussagekraft und Genauigkeit von wichtiger Bedeutung ist. Die Durchführung der Experimente in Kleingruppen fördert zudem die Teamfähigkeit.

Inhalte:

 Durchführung von Labor- und Feldversuchen mit Messungen der meteorologischen Grundgrößen Temperatur, Druck, Feuchte, Windgeschwindigkeit sowie einzelner Komponenten der Strahlungs- und Energiebilanz

Grundlegende Literatur:

Skript zum Instrumentenpraktikum

Empfohlene Vorkenntnisse:

- Module Einführung in die Meteorologie
- Module "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene" und "Kerne, Teilchen, Festkörper"
- Modul Strahlung

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Master Landschaftswissenschaften
- Bachelor Physik

KI	Klimatologie 2002		
Semesterlage	Wintersemester		
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie		
Lehrveranstaltungen (SWS)	Vorlesung Klimatologie Übung zu Klimatologie		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungen Prüfungsleistung: Klausur		
Notenzusammensetzung	Note der Klausur		
Leistungspunkte (ECTS): 4	Präsenzstudium (h): 45 Selbststud	ium (h): 75	

Die Studierenden haben einen Überblick über die Klimatologie, sodass Kompetenzen für die spätere Einordnung von Spezialwissen der Meteorologie und Klimatologie innerhalb der Klimatologie erlangt werden. Die Übungen fördern auch die Kommunikationsfähigkeit und die Methodenkompetenz bei der Umsetzung von Fachwissen.

Inhalte:

- Klimasystem: Komponenten des Klimasystems
- Klimate der Erde
- Energie- und Wasserhaushalt
- Allgemeine Zirkulation der Atmosphäre und des Ozeans
- regionale Zirkulationssysteme
- Klimaveränderungen
- Klimamodellierung
- Klimavorhersage
- Klimapolitik

Grundlegende Literatur:

- Mahlberg, Meteorologie und Klimatologie, Springer Verlag
- Peixoto & Oort, Physics of Climate, Springer Verlag
- Roedel, *Physik unserer Umwelt*, Springer Verlag
- Schönwiese, Klimatologie, UTB, Stuttgart

Empfohlene Vorkenntnisse:

• Module Einführung in die Meteorologie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Bachelor Geographie
- Bachelor und Master Physik

Theoretische Meteorologie 2561		2561
Semesterlage	Winter- und Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Vorlesung Thermodynamik und Statik Übung zu Thermodynamik und Statik Vorlesung Kinematik und Dynamik Übung zu Kinematik und Dynamik Vorlesung Turbulenz und Diffusion Übung zu Turbulenz und Diffusion	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu Thermodynamik und Statik, Kinematik und Dynamik, sowie Turbulenz und Diffusion Prüfungsleistung: Jeweils eine Klausur zu Thermodynamik und Statik, Kinematik und Dynamik, sowie Turbulenz und Diffusion	
Notenzusammensetzung	Note der 3 Klausuren (zu je gleichem Gewicht)	
Leistungspunkte (ECTS): 12	Präsenzstudium (h): 135 Selbststudiu	m (h): 225

Die Studierenden lernen die Grundlagen der theoretischen Meteorologie und können diese in Beispielen selber anwenden (Methodenkompetenz).

Inhalte:

Thermodynamik und Statik

- Erster und zweiter Hauptsatz der Thermodynamik, Entropie, Carnot'scher Kreisprozess, Wirkungsgrad
- potentielle Temperatur, thermische Schichtung, vertikaler Aufbau der ruhenden Atmosphäre
- Wasser und seine Phasenübergänge
- thermodynamische Diagrammpapiere

Kinematik und Dynamik

- physikalisch-mathematischen Grundlagen atmosphärischer Strömungen: Eulersche Bewegungsgleichung, Vorticity-Gleichung (2D/3D), quasi-geostrophische Gleichungen
- meteorologische Phänomene: geostrophischer und thermischer Wind, Schallwellen, Schwerewellen, Rossbywellen
- Linearisierung, Stabilitätsanalyse
- barotrope und barokline Instabilität

Turbulenz und Diffusion

- Meteorologische Phänomene, die durch Reibung dominiert werden
- Navier-Stokes-Gleichung
- Reynolds-Mittelung, Gleichung für die turbulente kinetische Energie, Richardson-Fluss-Zahl
- Vorgänge in der atmosphärischen Grenzschicht: Prandtl-Schicht, Ekman-Schicht

Grundlegende Literatur:

- Etling, Theoretische Meteorologie, Springer Verlag
- Bohren und Albrecht, *Atmospheric Thermodynamics, Oxford University Press*
- Holton, J.R.: An Introduction to Dynamic Meteorology, Academic Press
- Dutton, J.A.: *The Ceaseless Wind*, Dover Pubns
- Stull, R.B.: An Introduction to Boundary Layer Meteorology, Springer

Empfohlene Vorkenntnisse:

- Modul Einführung in die Meteorologie
- Module Mechanik und Wärme
- Vorlesung und Übungen zu Mathematische Methoden der Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Bachelor und Master Physik (auch Teile aus diesem Modul)

Synoptis	che Meteorologie	2104
Semesterlage	Wintersemester und Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Vorlesung Synoptische Meteorologie I Übung "Übungen zur operationellen Synoptik" Vorlesung Synoptische Meteorologie II Seminar Wetterbesprechung Übung "Einführung in das Arbeiten mit NINJO	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben zu den Vorlesung Seminarleistung Wetterbesprechung	en und
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 8	Präsenzstudium (h): 164 Selbststudium	m (h): 76

Die Studierenden verstehen die Grundlagen der Wetteranalyse und -vorhersage, erstellen unter Anleitung und mit vorhandenen Informationssystemen Wetteranalysen und -vorhersagen und präsentieren diese schriftlich und mündlich mit anschließender Diskussion. Sie entwickeln so neben der Fachkompetenz Kompetenzen im Medieneinsatz, kritischer Diskussion, Präsentation vor Fachpublikum, als auch der kundenorientierten Aufbereitung/Präsentation von Fachwissen.

Inhalte:

- Nutzung moderner meteorologischer Informationssysteme
- Analyse atmosphärischer Zustände
- Vorhersage der Wetterentwicklung
- Präsentation der Ergebnisse
- Eigene Beiträgen zur wissenschaftlichen Diskussion von Wetteranalyse und -vorhersage

Grundlegende Literatur:

- Kurz, *Synoptische Meteorologie*, Band 8 der Leitfäden für die Ausbildung im Deutschen Wetterdienst, Offenbach 1990.
- Bott, Synoptische Meteorologie Methoden der Wetteranalyse und –prognose, Springe, Berlin Heidelberg 2012

Empfohlene Vorkenntnisse:

- Modul Einführung in die Meteorologie
- Vorlesungen und Übungen zu Thermodynamik und Statik, sowie Kinematik und Dynamik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Bachelorstudiengang Meteorologie (Kernmodul)
- Master Landschaftswissenschaften

Studium und Beruf		2105
Semesterlage	Wintersemester, vorlesungsfreie Zeit (Praktikum), nach Wintersemester (Vortrag)	folgendes
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Seminar Einführung in das Studium der Meteorologie Praktikum Berufskundliches Praktikum	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Praktikum mit Praktikumsbericht	
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 5	Präsenz- und Selbststudium (h):	150
V (')		

Die Studierenden werden im ersten Semester in das Studium der Meteorologie eingeführt, mit den spezifischen Anforderungen in fachlicher und methodischer Hinsicht vertraut gemacht, lernen Dozenten und Forschung am Institut und die meteorologische Berufswelt in Bezug zu ihren eigenen Berufs- und Studienvorstellungen kennen.

Inhalte:

- Einführung in die Einrichtungen der Universität und den studentischen Alltag
- Einführung in die Forschung am Institut
- 4-wöchige praktische T\u00e4tigkeit an Arbeitsplatz in Forschung, Beh\u00f6rden oder Industrie unter meteorologischer Betreuung individuelle Studienberatung/Mentoring

Grundlegende Literatur:

- Hans-Werner Rückert Studieneinstieg, aber richtig. Das müssen Sie wissen: Fachwahl, Studienort, Finanzierung, Studienplanung, 2002, ISBN: 3-593-36899-4, Gruppe: Studienratgeber, Reihe: campus concret, Band: 65
- Otto Kruse, *Handbuch Studieren,Von der Einschreibung bis zum Examen*,1998, ISBN: 3-593-36070-5, Gruppe: Studienratgeber, Reihe: campus concret, Band: 32

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Bachelorstudiengang Meteorologie (Kernmodul)

Meteorologische Exkursion I		2106
Semesterlage	Sommersemester, vorlesungsfreie Zeit (Praktikum)	
Modulverantwortliche	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Exkursion Meteorologische Exkursion I	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Exkursionsbericht	
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 2	Präsenz- und Selbststudium (h):	60

Die Studierenden beschäftigen sich vor der Exkursion eigenverantwortlich mit einem thematischen Teilaspekt der Exkursion, tragen darüber während der Exkursion vor und stehen als Diskussions- und Ansprechpartner zur Verfügung, verfassen dazu einen schriftlichen Beitrag zum Exkursionsbericht, diskutieren diesen mit dem Betreuer und berichten dann während des Abschlussseminars. Dadurch wird ein thematischer Aspekt in besonderer Weise inhaltlich durchdrungen. Durch die Präsentation wird die Vortragstechnik weiter geschult.

Inhalte:

- Teilnahme an einer ein- oder zweiwöchigen, im allgemeinen thematisch orientierten Exkursion (z.B. maritim oder alpin)
- Vorbereitung auf einen thematischen Teilaspekt der Exkursion und anschließender schriftlicher
 Ausarbeitung als Beitrag zum Exkursionsbericht. Vortrag (10 Min.) im Exkursionsabschlussseminar.

Grundlegende Literatur:

• Ursula Steinbuch *Raus mit der Sprache. Ohne Redeangst durchs Studium.* 2005 ISBN: 3-593-37838-8, Gruppe: Studienratgeber, Reihe: campus concret

Empfohlene Vorkenntnisse:

- Modul Studium und Beruf
- Vorlesung Einführung in die Meteorologie I

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Bachelorstudiengang Meteorologie (Kernmodul)

Bachelor Meteorologie - Wahlbereich

Wahlmodul Meteorologie		2107
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Siehe Lehrveranstaltungskatalog	
Leistungsnachweis zum Erwerb der LP Studienleistung: gemäß §6 der Prüfungsordnung Prüfungsleistung: mündliche Prüfung (Prüfung erstreckt sich über einen Umfang von mindestens 8LP)		estens 8LP)
Notenzusammensetzung	Note der mündlichen Prüfung	
Leistungspunkte (ECTS): 20	Präsenz- und Selbststudium (h): 600	

Kompetenzziele:

Erweiterung der Fachkompetenz.

Inhalte:

- Siehe Lehrveranstaltungskatalog
- Ein Programmierpraktikum muss gewählt werden

Grundlegende Literatur:

Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:

• Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Siehe Lehrveranstaltungskatalog

Verwendbarkeit:

Bachelorstudiengang Meteorologie (Wahlbereich Meteorologie)

Bachelor Meteorologie – Naturwissenschaftlich-technischer Wahlbereich

Naturwissenschaftlich-technischer Wahlbereich 2108		
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen im Umfang von mindestens 12 LP der Fakultät für Mathematik und Physik, Fakultät für Elektrotechnik und Informatik, Fakultät für Maschinenbau und der naturwissenschaftlichen Fakultät oder auf Antrag Module anderer Fakultäten	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Gemäß Prüfungsordnung der anbietenden Fakultät Sieht die Prüfungsordnung der anbietenden Fakultät keine Studienleistung, sondern eine Prüfungsleistung vor, so wird die erbrachte Prüfungsleistung als Studienleistung behandelt und anerkannt.	
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 12	Präsenz- und Selbststudium (h): 360	
Inhalte: • Siehe Lehrveranstaltungskatalo	og	
Grundlegende Literatur:		
Empfohlene Vorkenntnisse:		
ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:		
Verwendbarkeit: Bachelorstudiengang Meteorologie (Naturwissenschaftlich-technischer Wahlbereich)		

Bachelor Meteorologie – Schlüsselkompetenzen

Schlüsselkompetenzen		2570
Semesterlage	Winter- und Sommersemester	
Modulverantwortliche	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen aus dem Angebot des Fachsprace des Zentrums für Schlüsselkompetenzen und entspre Angeboten der Fakultäten sowie Computerkurse aus Rechenzentrums. Ein Kurs im Bereich "Wissenschaftliches Schreiben" i muss belegt werden.	chend ausgewiesenen dem Angebot des
Leistungsnachweis zum Erwerb der LP	Studienleistung: gemäß §6 der Prüfungsordnung	
Notenzusammensetzung		
Leistungspunkte (ECTS): 4	Präsenz- und Selbststudium (h):	60-120

Kompetenzziele:

- Die Studierenden können wissenschaftliche Texte verfassen und beherrschen die Grundlagen korrekten Zitierens und Belegen.
- Sie erlernen und beherrschen exemplarisch Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltung

Inhalte:

- Grundlagen wissenschaftlichen Schreibens
- Umgang mit Fachliteratur
- Korrektes Zitieren und Belegen
- Weitere Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung

Grundlegende Literatur:

• Wird in der Lehrveranstaltung angegeben

Empfohlene Vorkenntnisse:

Keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Bachelorstudiengang Meteorologie (Kernmodul)

Master Physik - Fortgeschrittene Vertiefungsphase

Fortgeschrittene Festkörperphysik		1221
Semesterlage	Wintersemester	
Modulverantwortliche(r)	Institute für Festkörperphysik	
Lehrveranstaltungen (SWS)	Vorlesung Fortgeschrittene Festkörperphysik Übung zu Fortgeschrittene Festkörperphysik	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Kurztests und/oder Übungsaufgaben Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten	
Notenzusammensetzung	Note der Prüfungsleistung	
Leistungspunkte (ECTS): 5 Gewicht: 1	Präsenzstudium (h): 60 Selbststudiu	m (h): 90

Kompetenzziele:

Die Studierenden haben vertiefte Kenntnisse der Modelle und experimenteller Befunde auf dem Gebiet der Festkörperphysik. Sie können ausgewählte Phänomene eigenständig einordnen und geeignete Modelle zu ihrer Erläuterung entwickeln. Sie kennen bedeutende Entwicklungen auf dem Gebiet aus den letzten Jahrzehnten und haben eine Vorstellung von den aktuellen ungelösten Fragestellungen. Die Studierenden kennen die Vor- und Nachteile einzelner experimenteller Techniken und wissen, wie sich die verschiedenen Techniken komplementär ergänzen.

Inhalte:

- Supraleitung
- Dia- und Paramagnetismus
- Ferro- und Antiferromagnetismus
- Magnetische Resonanz
- endliche Festkörper
- Physik in einer und zwei Dimensionen, an Oberflächen und Grenzflächen
- Unordnung im Festkörper: Defekte, Legierungen, Gläser

Grundlegende Literatur:

- Ashcroft, Mermin, Festkörperphysik, Oldenbourg Verlag
- Ch. Kittel, Einführung in die Festkörperphysik, Oldenbourg Verlag

Empfohlene Vorkenntnisse:

Einführung in die Festkörperphysik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)

Fortgeschritte	ene Gravitationsphysik	1421
Semesterlage	Sommersemester	
Modulverantwortliche(r)	Institute für Gravitationsphysik	
Lehrveranstaltungen (SWS)	Vorlesung Gravitationsphysik Übung zu Gravitationsphysik	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten	
Notenzusammensetzung	Note der Prüfungsleistung	
Leistungspunkte (ECTS): 5 Gewicht: 1	Präsenzstudium (h): 60 Selbststudium	m (h): 90

Die Studierenden verstehen die grundlegenden Konzepte der Fortgeschrittenen Gravitationsphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Allgemeine Relativitätstheorie
- Äquivalenzprinzip, Lense-Thirring-Effekt
- Kosmologie
- Astrophysik
- Quellen und Ausbreitung von Gravitationswellen
- Laserinterferometer
- Interferometer-Recycling-Techniken
- Modulationsfelder
- Homodyn- und Heterodyndetektion
- Interferometer-Kontrolle
- Optische, mechanische und thermische Eigenschaften von Spiegeln und deren dielektrische Beschichtungen

Grundlegende Literatur:

wird in der Vorlesung angegeben

Empfohlene Vorkenntnisse:

- Grundlagen der Speziellen Relativitätstheorie
- Modul "Kohärente Optik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)

Quantenoptik		1321
Semesterlage	Wintersemester	
Modulverantwortliche(r)	Institut für Quantenoptik	
Lehrveranstaltungen (SWS)	Vorlesung Quantenoptik Übung zu Quantenoptik	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten	
Notenzusammensetzung	Note der Prüfungsleistung	
Leistungspunkte (ECTS): 5 Gewicht 1	Präsenzstudium (h): 60 Selbststudium	m (h): 90

Die Studierenden verstehen die grundlegenden Konzepte der Quantenoptik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Quantisierung des EM-Feldes
- Quantenzustände des EM-Feldes (Fock, Glauber, squeezed states)
- Heisenbergsche Undschärfe Relation (Anzahl/ Phase, Amplituden-/ Phasenquadratur)
- Photonenstatistik, Quantenrauschen
- Bell's Ungleichung und Nichtlokalität
- Erzeugung von Squeezing und Entanglement
- Spontane Emission, Lamb shift, Casimir-Effekte
- Atom-Feld-Wechselwirkung mit kohärenten Feldern, dressed states
- Photonen-Streuung, Feyman-Graphen
- Mehrphotonen-Prozesse
- Quantentheorie der nichtlinearen Suszeptibilität
- Experimente der modernen Quantenoptik

Grundleg	ende	Liter	atur:
----------	------	-------	-------

	Mandel/Wolf, Optical Coherence and Quantum Optics, Cambridge University Press
	Walls/Milburn, Quantum Optics, Springer
	Bachor/Ralph, A Guide to experiments in Quantum Optics, Wiley-VCH
\square	Schleich Quantum Ontics in Phase space Wiley-VCH

Originalliteratur

Empfohlene Vorkenntnisse:

Modul "Kohärente Optik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)

Quantenfeldtheorie		1121	
Semesterlage	Wintersemester oder Sommersemester		
Modulverantwortliche(r)	Institut für Theoretische Physik		
Lehrveranstaltungen (SWS)	Vorlesung Quantenfeldtheorie Übung zu Quantenfeldtheorie		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Übungsaufgaben Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten		
Notenzusammensetzung	Note der Prüfungsleistung		
Leistungspunkte (ECTS): 5 Gewicht: 1	Präsenzstudium (h): 60 Selbststudium (h): 90		

Die Studierenden haben ein vertieftes, formales Verständnis der Quantenfeldtheorie und können deren mathematisch-quantitative Beschreibungsmethoden eigenständig anwenden. Sie sind in der Lage die physikalischen Inhalte der mathematischen Modelle abzuleiten und in den Kontext bekannter Theorien einzuordnen. Die Studierenden sind mit den mathematischen Techniken vertraut und kennen analytische und numerische Verfahren, die zur Lösung von Problemen des Gebietes eingesetzt werden können.

Inhalte:

- Klassische Feldtheorie
- Kanonische Feldquantisierung (skalares Feld, Dirac-Feld, Vektorfeld)
- Störungsrechnung und Feynman-Regeln
- Pfadintegral-Quantisierung (Quantenmechanik, skalares Feld, kohärente Zustände)
- Renormierung (Regularisierung, Renormierung, effektive Wirkung)
- Quantisierung von Eichfeldern (QED, Yang-Mills)
- Endliche Temperaturen & Statistische Mechanik

Grundlegende Literatur:

Ш	M.E. Peskin & D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press
	L. H. Ryder, <i>Quantum Field Theory</i> , Cambridge University Press

- S. Weinberg, *The Quantum Theory of Fields*, Vols. I&II, Cambridge University Press
- D.J. Amit, *Field Theory, the Renormalization Group and Critical Phenomena*, World Scientific Publishing Company
- J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge University Press
- J. Zinn-Justin, *Quantum Field Theory and Critical Phenomena*, Oxford University Press

Empfohlene Vorkenntnisse:

Veranstaltung "Fortgeschrittene Quantentheorie"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)

Elektronik und Messtechnik		1222		
Semesterlage	Wintersemester oder Sommersemester	Wintersemester oder Sommersemester		
Modulverantwortliche(r)	Institut für Festkörperphysik			
Lehrveranstaltungen (SWS)	Vorlesung Elektronik Vorlesung Messtechnik Elektronikpraktikum			
Leistungsnachweis zum Erwerb der LP	Studienleistung: Laborübung Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten			
Notenzusammensetzung	Note der Prüfungsleistung			
Leistungspunkte (ECTS): 8 Gewicht: 1	Präsenzstudium (h): 120 Selbststudium	m (h): 120		

Die Studierenden lernen experimentelle und numerische Methoden kennen, wenden diese selber an und entwickeln Modellvorstellungen zur Erklärung der experimentellen und numerischen Ergebnisse. Sie kennen die Funktion elektronischer Bauelemente und können diese zur Messdatenerfassung richtig einsetzen.

Inhalte:

- Grundbegriffe der Elektronik
- Passive Bauelemente
- Transistor
- Analoge Grundschaltungen (Filter)
- Operationsverstärker
- Statische und dynamische OP-Beschaltung
- Grundlagen der Hochfrequenztechnik
- Signalgeneratoren / Phasenschieber
- Elektronische Regler
- DAAD Wandlung
- Praktikum: Auswahl verschiedener Versuche zu den Themen der Vorlesungen

Grundlegende Literatur:

- U.Tietze, C. Schenk, *Halbleiter Schaltungstechnik*, Springer Verlag
- Hering, Bressler, Gutekunst, *Elektronik für Ingenieure*, Springer Verlag
- P. Horowith, W. Hill, *The Art of Electronics*, Cambridge University Press

Empfohlene Vorkenntnisse:

 Module "Mechanik und Wärme", "Elektrizität und Relativität", "Optik, Atome, Moleküle, Quantenphänomene" und "Kerne, Teilchen, Festkörper"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:		
•		

Master Physik - Schwerpunktsphase

Ausgewählte Th	1621	
Semesterlage	Wintersemester oder Sommersemester	7
Modulverantwortliche(r)	Institute der Physik	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen im Umfang von mindestens 27 Leistungspunkten gemäß Vorlesungsverzeichnis.	
Leistungsnachweis zum Erwerb der	Studienleistung: gemäß §6 der Prüfungsordnung	
LP	Prüfungsleistung: mündliche Prüfung	
Notenzusammensetzung	Note der mündlichen Prüfung	
Leistungspunkte (ECTS): 27 Gewicht: 1	Präsenzstudium (h): Selbststudium (h):	

Kompetenzziele:

Die Studierenden haben einen breiten Überblick über das Themenspektrum moderner Physik und können dieses Wissen in das Gesamtgebäude der Physik einordnen. Sie haben sich exemplarisch in ein ausgewähltes Spezialgebiet der Physik eingearbeitet und sind in der Lage darauf aufbauend in einer Forschungsgruppe auf diesem Gebiet zu beginnen.

Inhalte:

Fortgeschrittene Lehrveranstaltungen der Physik nach Wahl der Studierenden

Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 12 LP.

Grundlegende Literatur:

Wird in den Lehrveranstaltungen bekannt gegeben

Empfohlene Vorkenntnisse:

Gemäß Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Masterstudiengang Physik (Schwerpunktsphase)

Ausgewählte Themen moderner Physik B		
Semesterlage	Wintersemester oder Sommersemester	•
Modulverantwortliche(r)	Institute der Physik	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen im Umfang von mindestens 17 Leistungspunkten gemäß Vorlesungsverzeichnis.	
Leistungsnachweis zum Erwerb der LP	Studienleistung: gemäß §6 der Prüfungsordnung Prüfungsleistung: mündliche Prüfung	
Notenzusammensetzung	Note der mündlichen Prüfung	
Leistungspunkte (ECTS): 17 Gewicht: 1	Präsenzstudium (h): Selbststudium (h):	

Die Studierenden haben einen breiten Überblick über das Themenspektrum moderner Physik und können dieses Wissen in das Gesamtgebäude der Physik einordnen. Sie haben sich exemplarisch in ein ausgewähltes Spezialgebiet der Physik eingearbeitet und sind in der Lage darauf aufbauend in einer Forschungsgruppe auf diesem Gebiet zu beginnen.

Inhalte:

Fortgeschrittene Lehrveranstaltungen der Physik nach Wahl der Studierenden

Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 12 LP.

Grundlegende Literatur:

Wird in den Lehrveranstaltungen bekannt gegeben

Empfohlene Vorkenntnisse:

Gemäß Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: Ist zusammen mit dem Modul Industriepraktikum zu wählen

Verwendbarkeit:

• Masterstudiengang Physik (Schwerpunktsphase)

	Seminar	1622
Semesterlage	Wintersemester oder Sommersemester	
Modulverantwortliche(r)	Institute der Physik	
Lehrveranstaltungen (SWS)	Seminar	
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: Seminarleistung	
Notenzusammensetzung	Note der Seminarleistung	
Leistungspunkte (ECTS): 3 Gewicht: 1	Präsenzstudium (h): 30 Selbststudium	m (h): 60

- Die Studierenden sind in der Lage, zu einem vorgegebenen, aktuellen Thema aus der modernen Physik, das z.T. noch Gegenstand der Forschung ist, selbstständig Literatur zu recherchieren.
- Die Studierenden sind in der Lage, sich ein aktuelles Wissensgebiet selbstständig zu erarbeiten.
- Die Studierenden können einen Vortrag über ein komplexes Thema der modernen Physik strukturieren und halten, dass ein physikalisch gebildetes Publikum dem Vortrag gut folgen kann. Durch die Gestaltung des Vortrags können sie die Zuhörer auch für ein komplexes Spezialthema interessieren.
- Die Studierenden sind in der Lage eine ansprechende Präsentation zu erstellen. (PowerPoint o.ä.).
- Die Studierenden sind in der Lage, eine wissenschaftliche Diskussion zu führen (über das eigene Thema genauso wie über die Themen der anderen Seminarteilnehmer).
- Die Studierenden beherrschen die deutsche bzw. englische Fachsprache in freier Rede.

Inhalte:

Fortgeschrittene Themen der Physik

Grundlegende Literatur:

wird in den Lehrveranstaltungen bekanntgegeben

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Masterstudiengang Physik (Schwerpunktsphase)

Schlüsselkompetenzen		1970
Semesterlage	Winter- und Sommersemester	
Modulverantwortliche	Studiendekanat	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums oder des Zentrums für Schlüsselkompetenzen und entsprechend ausgewiesenen Angeboten der Fakultäten sowie Computerkurse aus dem Angebot des Rechenzentrums.	
Leistungsnachweis zum Erwerb der LP	Studienleistung: gemäß §6 der Prüfungsordnung	
Notenzusammensetzung		
Leistungspunkte (ECTS): 4 - 10	Präsenz- und Selbststudium (h):	120 -300

• Sie erlernen und beherrschen exemplarische Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltung

Inhalte:

• Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung

Grundlegende Literatur:

• Wird in der Lehrveranstaltung angegeben

Empfohlene Vorkenntnisse:

Keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Masterstudiengang Physik
- Studierende des englischen Zweiges des MA Physik absolvieren in Abhängigkeit vom Resultat der verpflichtenden Beratung Sprachkurse in Deutsch in einem Umfang von bis zu 10 LP in diesem Modul.
- Für alle anderen Studierenden umfasst dieses Modul 4 LP

Industriepraktikum		1831	
Semesterlage	Wintersemester oder Sommersemeste	r	
Modulverantwortliche(r)	Institute der Experimentalphysik	Institute der Experimentalphysik	
Lehrveranstaltungen (SWS)	-		
Leistungsnachweis zum Erwerb der LP	Studienleistung: Praktikumsbericht		
Notenzusammensetzung	-		
Leistungspunkte (ECTS): 10	Präsenzstudium (h):	Selbststudiun	n (h):

Die Studierenden kennen typische Aufgabenfeldern und Tätigkeitsbereiche von Absolventen und Absolventinnen der Physik in der beruflichen Praxis. Sie können sich in ein Arbeitsumfeld mit Wissenschaftlern und Ingenieuren angrenzender Fachgebiete eingliedern und im Team aktiv einbringen. Sie kennen exemplarisch die Umsetzung wissenschaftlicher Erkenntnisse in einem industriellen Prozess und verstehen die Aufgabenstellung die hierbei auftreten.

Inhalte:

Praktikum in einem Industriebetrieb. Universitäre Institute sind ausgeschlossen, in Ausnahmefällen kann das Praktikum auch in einer außeruniversitären Forschungseinrichtung stattfinden.

Das Praktikum soll in einem typischen Berufsfeld eines Physikers / einer Physikerin abgeleistet werden.

Im Rahmen des Praktikums soll möglichst ein definiertes (kleines) Projekt bearbeitet werden.

Die Länge beträgt mindestens acht Wochen

Grundlege	nde l	Literatur	:
-----------	-------	-----------	---

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: Das Praktikum ist vorab genehmigungspflichtig durch den/die Vorsitzende/n des Prüfungsausschusses.

Verwendbarkeit:

Master Studiengang Physik (Modul Ausgewählte Themen moderner Physik B)

Master Meteorologie – Fortgeschrittene Meteorologie

Seminare zur Fortgeschrittene Meteorologie		2301
Semesterlage	Wintersemester und Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	2 Seminare aus unterschiedlichen fachlichen Bereichen der Meteorologie	
Leistungsnachweis zum Erwerb der LP	Studienleistung: 2 Seminarleistungen	
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 10 Gewicht: 1	Präsenzstudium (h): 56 Selbststudium	m (h): 244

Kompetenzziele:

- Die Studierenden sind in der Lage, zu einem vorgegebenen, aktuellen Thema aus der modernen Meteorologie, das z.T. noch Gegenstand der Forschung ist, selbstständig Literatur zu recherchieren.
- Die Studierenden sind in der Lage, sich ein aktuelles Wissensgebiet selbstständig zu erarbeiten.
- Die Studierenden können einen Vortrag über ein komplexes Thema der modernen Meteorologie strukturieren und halten, dass ein meteorologisch gebildetes Publikum dem Vortrag gut folgen kann.
- Durch die Gestaltung des Vortrags können sie die Zuhörer auch für ein komplexes Spezialthema interessieren.
- Die Studierenden sind in der Lage eine ansprechende Präsentation zu erstellen. (PowerPoint o.ä.).
- Die Studierenden sind in der Lage, eine wissenschaftliche Diskussion zu führen (über das eigene Thema genauso wie über die Themen der anderen Seminarteilnehmer).

Die Studierenden beherrschen die deutsche bzw. englische Fachsprache in freier Rede

Inhalte:

Fortgeschrittene Themen der Meteorologie

Grundlegende Literatur:

Wird in der Lehrveranstaltung bekannt gegeben.

Empfohlene Vorkenntnisse:

Wird in der Lehrveranstaltung bekannt gegeben.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

Masterstudiengang Meteorologie (Fortgeschrittene Meteorologie)

Fortgeschrittenenpraktikum		2304
Semesterlage Vorlesungsfreie Zeit zw. Winter und Sommer		
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Fortgeschrittenenpraktikum	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Laborübung	
Notenzusammensetzung	-	
Leistungspunkte (ECTS): 6	Präsenz- und Selbststudium (h):	180

Die Studierenden können moderne meteorologische Messmethoden selbst forschungsnah und praktisch in einer Feldmesskampagne einsetzen. Hierbei wird die Methodenkompetenz im Umgang mit großen Datenmengen und deren Auswertung gestärkt, sowie die kritische Beurteilung der Messergebnisse geschult. Das Arbeiten in Kleingruppen, das Kooperieren zwischen den Kleingruppen, sowie das Erstellen eines gemeinsamen Abschlussberichtes fördert in besonderem Maße die Teamfähigkeit.

Inhalte:

 Durchführung von Feldversuchen im Rahmen einer üblicherweise zweiwöchigen Messkampagne zu ausgewählten aktuellen Forschungsaufgaben.

Grundlegende Literatur:

Skript zum Instrumentenpraktikum

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Masterstudiengang Meteorologie (Fortgeschrittene Meteorologie)

Schlüsselkompetenzen		2670
Semesterlage	Winter- und Sommersemester	
Modulverantwortliche	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums oder des Zentrums für Schlüsselkompetenzen und entsprechend ausgewiesenen Angeboten der Fakultäten, sowie Computerkurse aus dem Angebot des Rechenzentrums.	
Leistungsnachweis zum Erwerb der LP Studienleistung: : gemäß §6 der Prüfungsordnung		
Notenzusammensetzung		
Leistungspunkte (ECTS): 4	Präsenz- und Selbststudium (h):	120

Die Studierenden erlernen und beherrschen exemplarische Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltungen

Inhalte:

Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung

Grundlegende Literatur:

• Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung

Empfohlene Vorkenntnisse:

• Keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

• Masterstudiengang Meteorologie (Schlüsselkompetenzen)

Master Meteorologie - Wahlbereich

Ausgewählte Themen moderner Meteorologie A 2202		
Semesterlage	Wintersemester und Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS) Lehrveranstaltungen im Umfang von mindestens 8 LP aus dem Veranstaltungskatalog der Meteorologie		P aus dem
Leistungsnachweis zum Erwerb der LP		
Notenzusammensetzung	Note der mündlichen Prüfung	
Leistungspunkte (ECTS): 8 Gewicht: 1	Präsenz- und Selbststudium (h):	240

Kompetenzziele:

Erweiterung der Fachkompetenz, sowie je nach Wahl der Veranstaltungen Vertiefung oder Erwerb neuer Methodenkompetenzen im Rahmen von Praktika zum Beispiel im Programmieren von Modellen, Anwenden von komplexen Modellen oder im Experimentieren.

Inhalte:

Lehrveranstaltungen im Umfang von 8 Leistungspunkten gemäß Vorlesungsverzeichnis bzw.

Lehrveranstaltungskatalog.

Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 8 I.P.

Grundlegende Literatur:

Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:

Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Siehe Lehrveranstaltungskatalog

Verwendbarkeit:

• Masterstudiengang Meteorologie (Wahlbereich Meteorologie)

Ausgewählte Themen moderner Meteorologie B		2650
Semesterlage	Wintersemester und Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen im Umfang von mindestens 8 LP aus dem Veranstaltungskatalog der Meteorologie	
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung	
Notenzusammensetzung	Note der mündlichen Prüfung	
Leistungspunkte (ECTS): 8 Gewicht: 1	Präsenz- und Selbststudium (h):	240

Erweiterung der Fachkompetenz, sowie je nach Wahl der Veranstaltungen Vertiefung oder Erwerb neuer Methodenkompetenzen im Rahmen von Praktika zum Beispiel im Programmieren von Modellen, Anwenden von komplexen Modellen oder im Experimentieren.

Inhalte:

Lehrveranstaltungen im Umfang von 8 Leistungspunkten gemäß Vorlesungsverzeichnis bzw.

Lehrveranstaltungskatalog.

Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 8 I.P.

Grundlegende Literatur:

Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:

Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Siehe Lehrveranstaltungskatalog

Verwendbarkeit:

Masterstudiengang Meteorologie (Wahlbereich Meteorologie)

Ausgewählte Themen moderner Meteorologie C 2651		
Semesterlage	Wintersemester und Sommersemester	
Modulverantwortliche(r)	Institut für Meteorologie und Klimatologie	
Lehrveranstaltungen (SWS)	Lehrveranstaltungen im Umfang von mindestens 8 LP aus dem Veranstaltungskatalog der Meteorologie	
Leistungsnachweis zum Erwerb der LP	Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: -	
Notenzusammensetzung	Modul wird nicht benotet	
Leistungspunkte (ECTS): 8	Präsenz- und Selbststudium (h):	240

Erweiterung der Fachkompetenz, sowie je nach Wahl der Veranstaltungen Vertiefung oder Erwerb neuer Methodenkompetenzen im Rahmen von Praktika zum Beispiel im Programmieren von Modellen, Anwenden von komplexen Modellen oder im Experimentieren.

Inhalte:

Lehrveranstaltungen im Umfang von 8 Leistungspunkten gemäß Vorlesungsverzeichnis bzw.

Lehrveranstaltungskatalog.

Es kann auch maximal ein weiteres Seminar zur fortgeschrittenen Meteorologie (5LP) eingebracht werden (siehe Lehrveranstaltungskatalog)

In Absprache mit einer Dozentin oder einem Dozenten der Meteorologie kann anstelle einer Lehrveranstaltung eine schriftliche Arbeit im Umfang von 3 LP in das Modul eingebracht werden.

Grundlegende Literatur:

Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:

Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Siehe Lehrveranstaltungskatalog

Verwendbarkeit:

Masterstudiengang Meteorologie (Wahlbereich Meteorologie)

Abschlussarbeiten und Forschungsphase

Bachelorprojekt		9001
Semesterlage	Beginn ganzjährig möglich	
Modulverantwortliche(r)	Studiendekan/in	
Lehrveranstaltungen (SWS)	Projekt "Bachelorarbeit" Seminar "Arbeitsgruppenseminar"	
Leistungsnachweis zum Erwerb der LP	Prüfungsleistung: Bachelorarbeit Studienleistung: Seminarleistung	
Notenzusammensetzung		
Leistungspunkte (ECTS): 15	Präsenz- und Selbststudium (h):	450

Kompetenzziele:

Die Studierenden haben die Fähigkeit zur selbständigen Einarbeitung in ein Forschungsthema. Sie können sich eigenständig Wissen aus z.T. englischsprachigen Büchern und Fachzeitschriften aneignen. Sie sind zu einer realistischen Planung, Zeiteinteilung und Durchführung eines wissenschaftlichen Projekts nach wissenschaftlichen Methoden unter Anleitung befähigt. Sie sind in der Lage einen Text gemäß wissenschaftlicher Standards zu schreiben. Sie können ein wissenschaftliches Thema unter Einsatz geeigneter Medien präsentieren und sie sind zur wissenschaftlichen Diskussion der eigenen Arbeit mit Mitstudierenden und Lehrenden fähig. Sie beherrschen die deutsche und z.T. englische Fachsprache in Wort und Schrift.

Inhalte:

- Einführung in das wissenschaftliche Arbeiten
- Selbstständige Projektarbeit unter Anleitung
- Wissenschaftliches Schreiben
- Präsentationstechniken
- Wissenschaftlicher Vortrag
- Diskussionsführung

Grundlegende Literatur:

- Stickel-Wolf, Wolf, Wissenschaftliches Arbeiten und Lerntechniken, 2004, ISBN: 3-409-31826-7
- Walter Krämer, *Wie schreibe ich eine Seminar- oder Examensarbeit?*, 1999, ISBN: 3-593-36268-6, Gruppe: Studienratgeber, Reihe: campus concret, Band: 47
- Abacus communications, *The language of presentations*, CDROM Lehr- und Trainingsmaterial
- Alley, The Craft of Scientific Presentation, Springer
- Day, *How to write & publish a scientific paper.* Cambridge University Press.

Empfohlene Vorkenntnisse:

Kernmodul des jeweiligen Bachelorstudiengangs

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Physik: Abgeschlossenes Modul Mathematik für Physiker und bestandene Modulübergreifende Prüfungen Experimentalphysik und Theoretische Physik I
- Meteorologie: mindestens 90 LP

Verwendbarkeit:

- Bachelorstudiengang Physik (Modul Bachelorprojekt)
- Bachelorstudiengang Meteorologie (Modul Bachelorprojekt)

Prüfungsverfahren: Das Thema der Bachelorarbeit wird von der oder dem Prüfenden nach Rücksprache mit dem Prüfling festgelegt. Die Ausgabe ist aktenkundig zu machen und dem Prüfling sowie dem Studiendekanat schriftlich mitzuteilen. Mit der Ausgabe des Themas wird die oder der Prüfende bestellt. Während der Anfertigung der Arbeit wird der Prüfling von der oder dem Prüfenden betreut.

Forschungspraktikum /Projektplanung		9031
Semesterlage	Winter- und Sommersemester	
Modulverantwortliche(r)	Studiendekan/in	
Lehrveranstaltungen (SWS)	Praktikum Forschungspraktikum Projekt Projektplanung für die Masterarbeit Seminar Arbeitsgruppenseminar	
Leistungsnachweis zum Erwerb der LP	Studienleistung: Seminarleistung	
Notenzusammensetzung	geht nicht in die Masternote ein	
Leistungspunkte (ECTS): 30	Präsenz- und Selbststudium (h):	900
Gewicht	0	

Die Studierenden sind in der Lage, sich in die Messmethoden oder theoretischen Konzepte eines Forschungsgebietes einzuarbeiten. Sie können sich einen Überblick über die Fachliteratur zu einem Forschungsprojekt verschaffen. Die Studierenden sind befähigt in einem (international zusammengesetzten) Team zu arbeiten und problemlos auf Deutsch und Englisch zu kommunizieren.

Die Studierenden haben sich soziale Kompetenzen angeeignet, die sie befähigen, sich in ein Forschungs- oder Entwicklungsteam einzugliedern. Sie können selbstständig wissenschaftlich arbeiten und komplexe Projekte planen. Die Studierenden können eigenständig recherchieren und sich einen Überblick über die z.T. englischsprachige Fachliteratur zu einem Forschungsprojekt verschaffen.

Die Studierenden können sich einen Überblick über die Fachliteratur zu einem Forschungsprojekt verschaffen. Sie sind in der Lage einen wissenschaftlichen Vortrag zu halten und ihr eigenes Forschungsprojekt im Kontext des aktuellen Stands der Wissenschaft darzustellen.

Inhalte:

- Literaturrecherche
- Einarbeitung in theoretische Verfahren bzw. experimentelle Verfahren
- Diskussion von Problemstellungen aktueller Forschung im Arbeitsgruppenseminar
- Definition einer wissenschaftlichen Problemstellung
- Methoden des Projektmanagements
- Erstellung, Vorstellung und Diskussion eines Projektplans

Grundlegende Literatur:

- Aktuelle Literatur zum jeweiligen Forschungsbereich
- Abacus communications, *The language of presentations*, CDROM Lehr- und Trainingsmaterial
- Alley, The Craft of Scientific Presentation, Springer
- Stickel-Wolf, Wolf, Wissenschaftliches Arbeiten und Lerntechniken, ISBN: 3-409-31826-7, Gabler Verlag
- Steinle, Bruch, Lawa, (Hrsg.), *Projektmanagement: Instrument moderner Dienstleistung*, 1995, ISBN 3-929368-27-7, FAZ
- Little, (Hrsq.), Management der Hochleistungsorganisation, Gabler Verlag, Wiesbaden, 1990

Empfohlene Vorkenntnisse:

• Fortgeschrittene Vertiefungsmodule des jeweiligen Masterstudiengangs

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

- Masterstudiengang Physik (Module der Forschungsphase)
- Masterstudiengang Meteorologie (Module der Forschungsphase)

Masterarbeit		9021	
Semesterlage		Winter- und Sommersemester	
Modulverantwortliche(r)		Studiendekan/in	
Lehrveranstaltungen (SWS)			
Leistungsnachweis zum Erwei LP	rb der	Prüfungsleistung: Masterarbeit	
Notenzusammensetzung		Note der Masterarbeit	
Leistungspunkte (ECTS):	30		
Gewicht Physik:	5	Präsenz- Selbststudium (h):	900
Gewicht Meteorologie:	4		

Die Studierenden können sich selbstständig in ein Forschungsprojekt einarbeiten. Sie sind in der Lage unter Anleitung wissenschaftliche Projekte zu strukturieren, vorzubereiten und durchzuführen. Sie verschaffen sich einen Überblick über die aktuelle Literatur und analysieren und lösen komplexe Probleme. Die Studierenden können kritische Diskussionen über eigene und fremde Forschungsergebnisse führen und konstruktiv mit Fragen und Kritik umgehen. Die Studierenden beherrschen die deutsche und englische Fachsprache. Sie sind in der Lage einen wissenschaftlichen Vortrag zu halten und ihre eigenen Ergebnisse im Kontext des aktuellen Stands der Wissenschaft darzustellen.

Inhalte:

- Selbstständige Bearbeitung einer aktuellen wissenschaftlichen Problemstellung in einem internationalen Forschungsumfeld
- Schriftliche Dokumentation und mündliche Präsentation des Forschungsprojekts und der Ergebnisse
- Wissenschaftliche Diskussion der Ergebnisse

Grundlegende Literatur:

- Aktuelle Literatur zur jeweiligen wissenschaftlichen Problemstellung
- Day, How to write & publish a scientific paper. Cambridge University Press
- Walter Krämer, *Wie schreibe ich eine Seminar- oder Examensarbeit?*, 1999, ISBN: 3-593-36268-6, Gruppe: Studienratgeber, Reihe: campus concret, Band: 47.

Empfohlene Vorkenntnisse:

•

qqf. Eingangsvoraussetzungen und qqf. Teilnehmerzahlbegrenzung:

- Physik: Forschungspraktikum/Projektplanung und mind. 40 Leistungspunkte
- Meteorologie: Modulübergreifende Prüfung Forschungspraktikum/ Projektplanung

Verwendbarkeit:

- Masterstudiengang Physik
- Masterstudiengang Meteorologie

Prüfungsverfahren: Das Thema der Masterarbeit wird von der oder dem Erstprüfenden nach Rücksprache mit dem Prüfling festgelegt. Die Ausgabe ist aktenkundig zu machen und dem Prüfling sowie dem Studiendekanat schriftlich mitzuteilen. Mit der Ausgabe des Themas werden die oder der Erstprüfende und die oder der Zweitprüfende bestellt. Während der Anfertigung der Arbeit wird der Prüfling von der oder dem Erstprüfenden betreut.

Lehr veranstaltung skatalog

Lehrveranstaltungen der Physik

Institut für Theoretische Physik

Fortgeschrittene Quantentheorie	80
Seminar zu Fortgeschrittene Quantentheorie	81
Computerphysik	83
Theoretische Festkörperphysik	84
Statistische Feldtheorie	85
Seminar zur Theorie der kondensierten Materie	86
Fortgeschrittene Computerphysik	87
Aktuelle Probleme der Theorie der kondensierten Materie	88
Theorie der fundamentalen Wechselwirkungen	89
Seminar zu Theorie der fundamentalen Wechselwirkungen	90
Ergänzungen zur klassischen Physik	91
Einführung in die Teilchenphysik	92
Institut für Festkörperphysik	
Festkörperphysik in niedrigen Dimensionen	93
Laborpraktikum zu Festkörperphysik in niedrigen DimensionenFeh definiert.	ler! Textmarke nicht
Oberflächenphysik	94
Vom Atom zum Festkörper	
Seminar zu Vom Atom zum Festkörper	
Halbleiterphysik	
Halbleitermesstechnik in der Photovoltaik	98
Rastersondentechnik	99
Molekulare Elektronik	100
Methoden der Oberflächenanalytik	101
Laborpraktikum Methoden der Oberflächenanalytik	102
Physik der Nanostrukturen	103
Optische Spektroskopie von Festkörpern	104
Quantenstrukturbauelemente	105
Physik der Solarzelle	106
Laborpraktikum Festkörperphysik	
Seminar Aktuelle Forschungsthemen der Festkörperphysik	110
Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern	111
Physik in Nanostrukturen	112
Institut für Quantenoptik	
Nichtlineare Optik	
Photonik	114

•	k	
Optische Schichten		119
Institut für Gravitationspl	nysik	
Data Analysis		120
Neutron Stars and Bl	ack Holes	122
Seminar Gravitations	wellen	123
	physik	
Laborpraktikum Lase	rinterferometrie	126
	nd Kontrolle optischer Experimente	
	ter Computing	
	t	
	rinterferometrie	
Elektronische Metrol	ogie im Optiklabor	131
Institut für Radioökologie	und Strahlenschutz	
Kernphysikalisc	he und kernchemische Grundlagen des Strahlenschutzes und de	er
3		
	nnstoffkreislauf, technische Aspekte und gesellschaftlicher Disk	
	Umwelt und Strahlengefährdung des Menschen	
	Radioökologie	
•	thoden in der Radioanalytik	
	panalytik	
	assenspektrometrie	
	trahlenschutz und Radioökologie	
Fachkunde im Strahl	enschutz	143
Lehrveranstaltungen der I	Meteorologie	
Numerische Wettervo	orhersage	144
Programmierpraktiku	m zur Numerischen Wettervorhersage	145
	ng in der Atmosphäre	
Atmosphärische Konv	vektion	148
Programmierpraktiku	m zur Simulation der atmosphärischen Grenzschicht	149
	er Strömungen mit LES-Modellen	
Numerisches Praktiku	um zur Simulation turbulenter Strömungen mit LES-Modellen	151
_		
_		
	ursion II	
	nland	
Externes Praktikum A	Ausland	161

Tabelle Zuordnung der Lehrveranstaltungen

Lacranary (Bachelor Physik	Bachelor Meteorologie	Mas			laster ische Physi	k		Master leteorologie	
Modulname/ Veranstaltung	Moderne Aspekte der Physik	Wahlmodul Meteorologie	Ausgewählte Themen moderner Physik	Seminar	Ausgewählte Themen der Photonik	Ausgewählte Themen der Nanoelektronik	Seminar	Ausgewählte Themen moderner Meteorologie A	Ausgewählte Themen moderner Meteorologie B	Ausgewählte Themen moderner Meteorologie C
Veranstaltung								,		
Fortgeschrittene Quantentheorie	Х		Χ							
Seminar zu Fortgeschrittene Quantentheorie	Х		Х	Χ						
Computerphysik	Х		Χ							
Theoretische Festkörperphysik			Х							
Statistische Feldtheorie			Х							
Seminar zur Theorie der kondensierten Materie			Х	Χ						
Fortgeschrittene Computerphysik	Х		Χ							
Aktuelle Probleme der Theorie der kondensierten Materie			Х							
Theorie der fundamentalen Wechsel-wirkungen			Х							
Seminar zu Theorie der fundamentalen Wechsel- wirkungen			Х	Χ						
Ergänzungen zur klassischen Physik	Х		Х							
Festkörperphysik in niedrigen Dimensionen	Х		Х							
Laborpraktikum Festkörperphysik in niedrigen Dimensionen	Х		Х							
Oberflächenphysik			Χ							
Vom Atom zum Festkörper	Х		Х			Χ				

	Bachelor Physik	Bachelor Meteorologie	Mas			laster	k		Master leteorologie	
Modulname/ Veranstaltung	Moderne Aspekte der Physik	Wahlmodul Meteorologie	Ausgewählte Themen moderner Physik	Seminar	Ausgewählte Themen der Photonik	Ausgewählte Themen der Nanoelektronik	Seminar	Ausgewählte Themen moderner Meteorologie A	Ausgewählte Themen moderner Meteorologie B	Ausgewählte Themen moderner Meteorologie C
Seminar zu Vom Atom zum Festkörper			Х	Χ		Х	Χ	,	,	
Halbleiterphysik			Х			Χ				
Halbleitermess-technik in der Photovoltaik	Χ		Х			Χ				
Rastersonden-technik	Χ		Х			Χ				
Molekulare Elektronik	Х		Х			Х				
Methoden der Oberflächen-analytik	Χ		Х			Х				
Laborpraktikum Methoden der Oberflächen-analytik			Х			Х				
Spintronik			Х			Χ				
Optische Spektroskopie von Festkörpern			Х			Х				
Quantenstruktur- bauelemente			Х			Х				
Physik der Solarzelle	Χ		Х			Χ				
Laborpraktikum Festkörperphysik			Х	Х		Х	Χ			
Aktuelle Forschungs- themen der Festkörperphysik	Х		Х		Х					
Nichtlineare Optik			Х		Χ					
Photonik			Х		Х					
Seminar zu Photonik			Х		Х					
Atomoptik			Х		Х					
Laborpraktikum Optik			Х							
Data Analysis			Х							

	Bachelor Physik	Bachelor Meteorologie	Mas			laster ische Physi	k		Master leteorologie	
Modulname/ Veranstaltung	Moderne Aspekte der Physik	Wahlmodul Meteorologie	Ausgewählte Themen moderner Physik	Seminar	Ausgewählte Themen der Photonik	Ausgewählte Themen der Nanoelektronik	Seminar	Ausgewählte Themen moderner Meteorologie A	Ausgewählte Themen moderner Meteorologie B	Ausgewählte Themen moderner Meteorologie C
Neutron Stars and Black Holes			Х	Χ						
Seminar Gravitationswellen			Х	Χ						
Seminar Gravitationsphysik			Х		Х					
Laserinterferometrie			Х		Х					
Laborpraktikum Laserinterferometrie			Х							
Laserstabilisierung und Kontrolle optischer Experimente	Х		Х		Х					
Nichtklassisches Licht			Х		Χ					
Nichtklassische Laserinterferometrie			Х		Χ					
Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie	Х		х							
Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs	X		х							
Radioaktivität in der Umwelt und Strahlengefährdung des Menschen	Х		Х							
Strahlenschutz und Radioökologie	Х		Х							
Laborpraktikum Strahlenschutz	Х		Х							
Nukleare Analysemethoden	Х		Х							
Kernphysikalische Anwendungen	X		Х							

	Bachelor Physik	Bachelor Meteorologie	Mas			laster ische Physi	k		Master leteorologie	
Modulname/ Veranstaltung	Moderne Aspekte der Physik	Wahlmodul Meteorologie	Ausgewählte Themen moderner Physik	Seminar	Ausgewählte Themen der Photonik	Ausgewählte Themen der Nanoelektronik	Seminar	Ausgewählte Themen moderner Meteorologie A	Ausgewählte Themen moderner Meteorologie B	Ausgewählte Themen moderner Meteorologie C
Sem./Praktikum Strahlenschutz und Radioökologie	Х		Х							
Einführung in die Teilchenphysik	Х		Χ							
Elektronische Metrologie im Optiklabor			Х							
Grundlagen der Lasermedizin und Biophotonik			Х		Х					
Festkörperlaser			Χ		Χ					
Optische Schichten			Χ		Χ					
Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern			Х			Χ				
Physik in Nanostrukturen	X		Χ							
Fachkunde im Strahlenschutz	Х		Х							
Numerische Wettervorhersage		Χ						Χ	Χ	Х
Programmier-praktikum zur Numerischen Wettervorhersage		Х						Χ	Χ	Х
Schadstoffausbreitung in der Atmosphäre		Х						Χ	Χ	Χ
Turbulenz II		Х						Х	Х	Х
Atmosphärische Konvektion		Х						Х	Х	Х
Programmier-praktikum zur Atmosphärischen Konvektion		Х						Х	Х	Х
Simulation turbulenter Strömungen mit LES- Modellen		Х						Х	Χ	Х
Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen		Х						X	X	Х

	Bachelor Physik	Bachelor Meteorologie	Mas Phy			laster	ik		Master leteorologie	
Modulname/ Veranstaltung	Moderne Aspekte der Physik	Wahlmodul Meteorologie	Ausgewählte Themen moderner Physik	Seminar	Ausgewählte Themen der Photonik	Ausgewählte Themen der Nanoelektronik	Seminar	Ausgewählte Themen moderner Meteorologie A	Ausgewählte Themen moderner Meteorologie B	Ausgewählte Themen moderner Meteorologie C
Agrar- meteorologie		Х						X	X	Х
Lokalklimate		Х						Χ	Χ	Χ
Seminar zur fortgeschrittenen Meteorologie										Х
Meteorologische Exkursion II										Х
Externes Praktikum Inland										Х
Externes Praktikum Ausland										Х

Lehrveranstaltungen der Physik

Fortgeschrittene Quante	ntheorie						
SWS 3+1	Leistungspunkte:	Verantwortung Institut für Theoretische Physik					
Regelmäßigkeit: Sommersemest	er						
Inhalt: • Vielteilchensysteme: Identische Teilchen, Fock-Raum, Feldquantisierung • Offene Quantensysteme: Dichtematrix, Messprozess, Bell'sche Ungleichung • Information und Thermodynamik: Zustandssummen, Entropie, thermodynamisches Gleichgewicht • Semiklassische Näherung: Bohr-Sommerfeld, Tunneleffekt, Pfadintegral • Relativistische Quantenmechanik: Raum-Zeit-Symmetrien, Dirac-Gleichung • Streutheorie							
Grundlegende Literatur: W. Greiner and J. Reinhardt, Theoretische Physik 7 (Quantenelektrodynamik) und 7a (Feldquantisierung), Springer R.H. Landau, Quantum Mechanics II, A Second Course in Quantum Theory, Wiley-VCH A. Peres, Quantum Theory: Concepts and Methods, Springer M.E. Peskin & D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press J.J. Sakurai, Modern Quantum Mechanics, Addison Wesley F. Schwabl, Quantenmechanik für Fortgeschrittene, Springer							
Empfohlene Vorkenntnisse:	heorie						

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Seminar zu Fortgeschrittene Quantentheorie								
SWS	Leistungspunkte:	Verantwortung						
2	3	Institut für Theoretische Physik						
Regelmäßigkeit: Sommersemest	rer							
Inhalt: Nach Absprache mit den Dozent Quantentheorie belegt werden.	Nach Absprache mit den Dozenten. Das Seminar muss in Zusammenhang mit der Vorlesung Fortgeschrittene							
Grundlegende Literatur: W. Greiner and J. Reinhardt, Theoretische Physik 7 (Quantenelektrodynamik) und 7a (Feldquantisierung), Springer R.H. Landau, Quantum Mechanics II, A Second Course in Quantum Theory, , Wiley-VCH A. Peres, Quantum Theory: Concepts and Methods, Springer M.E. Peskin & D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press J.J. Sakurai, Modern Quantum Mechanics, Addison Wesley F. Schwabl, Quantenmechanik für Fortgeschrittene, Springer								
Empfohlene Vorkenntnisse:Mathematik für PhysikerEinführung in die Quantent	heorie							
Modulzugehörigkeit: • Moderne Aspekte der Physil								
Ausgewählte Themen modeSeminar	rner Pnysik							

SWS	Leistungspunkte:	Verantwortung
3+1	5	Institut für Theoretische Physik
Regelmäßigkeit: Win	ter- oder Sommersemester	
nhalt:		
 Feldquantisi 	erung, Casimir-Effekt	
	e, thermische Zustände, kohärente	
	verteilungen (P-Funktion, Husimi-F	unktion, Wigner–Funktion)
 Nichtklassise Atom-Feld-V 		Rabi-Oszillationen, Jaynes-Cummings-Modell, Floquet-
	reszenz, spontane Emission)	tadi Oszinationen, saynes eannings Modell, Hoquet
		ker-Planck-Gleichung), parametrische Verstärkung
 Atomoptik, 0 	Cavity-QED, starke Laserfelder	
Grundlegende Litera	:ur:	
C. Gerry und	P. Knight, Introductory Quantum C	Optics, Cambridge University Press
	Methods in theoretical quantum opt	
	l G. Milburn, Quantum Optics, Sprin serphysik, Oldenbourg	iger
	Quantum optics in phase space, W	filey-VCH
		in intense laser fields, Cambridge University Press
🔛 R. Loudon, T	he Quantum Theory of Light, Oxford	d Science Publications
Empfohlene Vorkenr	thical	
	MIISSE.	
Theoretische Elei		

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Computerphysik		
SWS 2+2	Leistungspunkte:	Verantwortung Institut für Theoretische Physik
Regelmäßigkeit: Winter- oder S	ommersemester	

Inhalt:

- Grundlegende numerische Methoden (Differentiation, Integration, Interpolation, Lösung einer nicht-linearen Gleichung, Systeme linearer algebraischer Gleichungen, Monte Carlo-Methoden)
- Numerische Lösung gebräuchlicher Probleme der Physik (Differentialgleichungen, Eigenwertprobleme, Optimierung, Integration und Summen vieler Variablen)
- Anwendungen aus der Mechanik, Elektrodynamik und Thermodynamik
- Datenanalyse (statistische Analyse, Ausgleichsrechnung, Extrapolation, spektrale Analyse)
- Visualisierung (graphische Darstellung von Daten)
- Einführung in die Simulation physikalischer Systeme (dynamische Systeme, einfache Molekulardynamik)
- Computer-Algebra

Grundlegende Literatur:

Wolfgang Kinzel und Georg Reents, " <i>Physik per Computer</i> ", Spektrum Akademischer Verlag S.E. Koonin and D.C. Meredith, " <i>Computational Physics</i> ", Addison–Wesley W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, " <i>Numerical Recipes in C++</i> ", Cambridge University
Press
J.M. Thijssen, "Computational Physics", Cambridge University Press
Tao Pang, "An Introduction to Computational Physics", Cambridge University Press
S. Brandt, "Datenanalyse", Spektrum Akademischer Verlag
V. Blobel und E. Lohrmann, "Statistische und numerische Methoden der Datenanalyse", Teubner Verlag
R.H. Landau, M.J. Paez, and C.C. Bordeianu, Computational Physics, Wiley-VCH, 2007

Empfohlene Vorkenntnisse:

- Erfahrung mit dem Computer und Grundlagen der Programmierung.
- Analysis I+II
- Theoretische Elektrodynamik
- Analytische Mechanik und Spezielle Relativitätstheorie
- Einführung in Quantentheorie

- Moderne Aspekte der Physik
- Naturwissenschaftlich- technischer Wahlbereich
- Ausgewählte Themen moderner Physik

Theoretische Festkörper	ohysik	
SWS 3+1	Leistungspunkte: 5	Verantwortung Institut für Theoretische Physik
Regelmäßigkeit: Winter – oder S	Sommersemester (im Wechsel n	nit Statistischer Feldtheorie)
Inhalt: Transportphänomene Elektronische Korrelatio niedrigdimensionale Sy Magnetismus Supraleitung Unordnung und Störste Mesoskopische Systeme	steme Ilen	
C. Kittel: Quantum Theo W. Nolting: Quantenth J.M. Ziman, Electrons a	ory of Solids, Wiley eorie des Magnetismus, Band I - nd Phonons, Oxford University F	
Empfohlene Vorkenntnisse:Fortgeschrittene QuantenthQuantenfeldtheorie	eorie	
Modulzugehörigkeit: • Ausgewählte Themen mode	rner Physik	

Statistische Feldthe	eorie	
SWS	Leistungspunkte:	Verantwortung
3+1	5	Institut für Theoretische Physik
Regelmäßigkeit: Winter -	oder Sommersemester (im We	chsel mit Theoretischer Festkörperphysik)
Inhalt:		
 Zustandssumme kritische Phänom kondensierte Ma Quantenspinkett Nichtgleichgewich 	iene terie in zwei Dimensionen en	
		d Theory (Cambridge University Press, 2006) Theory in Condensed Matter Physics (Oxford University
D. J. Amit & V. N Scientific 2005) G. Mussardo: Sta		University Press, 2007) enormalization, group, and critical phenomena (World etion to exactly solved models in statistical physics, (Oxford
2010) A. M. Tsvelik: <i>Qu</i>	antum field theory in condensed	d matter physics, (Cambridge 2003)
Empfohlene Vorkenntnis • Fortgeschrittene Qua		

Modulzugehörigkeit:

Seminar zur Theorie der	kondensierten Materie	
SWS 2	Leistungspunkte:	Verantwortung Institut für Theoretische Physik
Regelmäßigkeit: Winter – oder S	Sommersemester	
Inhalt: Nach Absprache mit den Dozento Festkörperphysik oder Statistisch		menhang mit der Vorlesung Theoretische
Grundlegende Literatur: Siehe Theoretische Fest	körperphysik und Statistische F	eldtheorie sowie aktuelle Forschungspublikationen
Empfohlene Vorkenntnisse:		
Fortgeschrittene QuantenthQuantenfeldtheorie	eorie	
Modulzugehörigkeit: • Ausgewählte Themen moder • Seminar	rner Physik	

Fortgeschrittene Compu	terphysik	
SWS 4+2	Leistungspunkte: 8	Verantwortung Prof. Jeckelmann
Regelmäßigkeit: Winter – oder S	ommersemester	
Inhalt: Exakte Diagonalisierung Monte Carlo Simulation numerische Renormieru Dichtefunktionaltheorie Moleküldynamik Quantendynamik	en ngsgruppe	
Grundlegende Literatur:		
S.E. Koonin and D.C Me T. Pang, Computational	ional Physics (Cambridge Univeredith, Computational Physics, Physics, Cambridge University and W. Christian, Computer Sin	Addison-Wesley, 1990.
Empfohlene Vorkenntnisse:		
Einführung in die QuantenthStatistische PhysikComputerphysik	neorie	
Modulzugehörigkeit:		

Ausgewählte Themen moderner Physik

Moderne Aspekte der Physik

Aktuelle Probleme der T	heorie der kondensierte	en Materie
SWS	Leistungspunkte:	Verantwortung
2	2	Institut für Theoretische Physik

Regelmäßigkeit: Winter – oder Sommersemester

Inhalt:

Aktuelles Thema nach Wahl der Dozentin oder des Dozenten, z.B.

- Theorie des Magnetismus
- Theorie der Supraleitung
- Theorie des Quanten Hall Effekt
- Theorie stark korrelierter Elektronen
- Integrable Quantensysteme
- Systeme außerhalb des Gleichgewichts

Grundlegende Literatur:

wird vom Dozenten angegeben

Empfohlene Vorkenntnisse:

- Fortgeschrittene Quantentheorie
- Fortgeschrittene Festkörperphysik

Modulzugehörigkeit:

Theorie der fundamentalen Wechselwirkungen		
SWS 3+1	Leistungspunkte: 5	Verantwortung Institut für Theoretische Physik

Regelmäßigkeit: Winter- oder Sommersemester

Inhalt:

Das Standardmodell der Teilchenphysik

- eine heuristische Darstellung der Theorie und Anwendungen
- Lagrangedichten in der Feldtheorie
- Eichinvarianz, nichtabelsche Eichtheorie
- Dirac-Fermionen
- die elektroschwache Theorie
- Massen und Higgs-Mechanismus
- QCD, Quark-Confinement, Jets, Glueballs
- Flavor-Physik, SU(3), schwere Quarks
- Wirkungsquerschnitte, Zerfallsbreiten, Lebensdauern
- Tests des Standardmodells
- weiterführende Themen

Grundlegende Literatur:

G. Kane, Modern Elementary Particle Physics, Perseus Publishing 1993

Empfohlene Vorkenntnisse:

Fortgeschrittene Quantentheorie

Modulzugehörigkeit:

Seminar zu Theorie der f	undamentalen Wechse	elwirkungen		
SWS 2	Leistungspunkte: Verantwortung 3 Institut für Theoretische Physik			
Regelmäßigkeit: Winter- oder Sc	ommersemester			
Inhalt: Nach Absprache mit den Dozente fundamentalen Wechselwirkunge		nmenhang mit der Vorlesung Theorie der		
Wess, Bagger, <i>Supersyn</i> Galperin, Ivanov, Ogieve	, Superstring Theory, Cambridg	eton University Press perspace, Cambridge University Press		
Empfohlene Vorkenntnisse:				
Fortgeschrittene Quantenth	neorie			
Modulzugehörigkeit: • Ausgewählte Themen moder • Seminar	rner Physik			

Ergänzungen zur klassis	chen Physik	
SWS 3+1	Leistungspunkte: 5	Verantwortung Institut für Theoretische Physik
Regelmäßigkeit: Winter – oder	Sommersemester	
 <u>Relativitätstheorie</u>: Mir Teilchen, Ankopplung d Tests der Allgemeinen F Hilbert-Wirkung, kovari Kosmologie <u>Eichtheorien</u>: Parallelve Identitäten, Wirkungsp fundamentalen Wechse <u>Integrable und chaotisc</u> Poincarés Integralinvar 	nkowski-Raum, Lorentzgru es elektromagnetischen Fo Relativitätstheorie im Sonn iante Energie-Impuls-Erha erschiebung, kovariante Ab rinzip, Noetheridentitäten elwirkungen, Monopole, sp che Bewegung: Hamiltonso ianten, Wirkungs-Winkel-	h Wahl der Dozentin oder des Dozenten, z.B. ppe, Darstellungen der Lorentzgruppe, Relativistische eldes, Liénard-Wiechert Potentiale, Schwarzschild-Metrik, nensystem, Thirring-Lense-Effekt, Lichtablenkung, Einstein-Itung, Gravitationswellen: Erzeugung und Nachweis, bleitung, Feldstärken, Holonomie-Gruppe, Bianchi-, Algebraisches Poincaré-Lemma, Standard-Modell der ontane Symmetriebrechung, BRS-Symmetrie, Anomalien che Bewegungsgleichungen, kanonische Transformationen, Variable, Störungstheorie, Kolmogorov-Arnol'd-Moser ffs Fixpunktsatz, Selbstähnlicher Hamiltonscher Fluss
Grundlegende Literatur:		
L. O'Raifeartaigh, GroupV. Arnol'd, MathematicA. J. Lichtenberg and M	Oxford University Press Foundations of Cosmology o Structure of Gauge Theol al Methods of Classical Mo l. A. Liebermann, Regular a	r, Cambridge University Press ries, Cambridge University Press
Empfohlene Vorkenntnisse: • Analytische Mechanik und S	Spezielle Relativitätstheor	ie
Modulzugehörigkeit: • Moderne Aspekte der Physil	Κ.	

Einführung in die Teilch	enphysik	
SWS 3+1	Leistungspunkte: 5	Verantwortung Institut für Theoretische Physik
Regelmäßigkeit: Sommersemest	er	
 Symmetrien und Erhalt Hadronen, Quarks, Part QCD elektromagnetische und Standardmodell der Tei Beschleuniger und Dete Neutrinophysik 	onen d schwache Wechselwirkungen Ichenphysik	
Grundlegende Literatur:		
	giephysik, Teubner Verlag	bridge University Press
Empfohlene Vorkenntnisse:		
Modulzugehörigkeit: • Moderne Aspekte der Physik • Ausgewählte Themen mode		

Festkörperphysik in nied	lrigen Dimensionen		
SWS 3+1	Leistungspunkte:	Verantwortung Institut für Festkörperphysik	
Regelmäßigkeit: Sommersemest	er		
 Elektronische Eigenscha Auswirkungen der Korro Resonante Bauelement Magnetische Eigenscha 	e iften 1: Dispersion, Instabilitäten, nisotropen Systemen	ı	
Grundlegende Literatur: Roth, Carroll, One-dime I. Markov, Crystal grow R. Waser, Nanotechnol	th for beginners, World Scie	ntific	
Empfohlene Vorkenntnisse: • Einführung in die Festkörpe	rphysik		
Modulzugehörigkeit: • Moderne Aspekte der Physik	(

Oberflächenphysik		
SWS 3+1	Leistungspunkte:	Verantwortung Institut für Festkörperphysik
Regelmäßigkeit: Sommersemest	er	
 Elektronische Eigenscha Bindung von Atomen u einfache Reaktionskine Strukturierung und Sell 		gehörige Messmethoden
3 ,	faces, Cambridge University Pr Dberflächenphysik des Festkörp of surface physics, Springer	
Empfohlene Vorkenntnisse: • Einführung in die Festkörper • Fortgeschrittene Festkörper		
Modulzugehörigkeit:		

Vom Atom zum F	- estkörper		
SWS 3+1	Leistungspunkte: 5	Verantwortung Institut für Festkörperphysik	
Regelmäßigkeit: Somn	nersemester		
 Elektronische Auswirkunger Resonante Ba Magnetische Eindimension Solitonen Supraleitung 	on Strukturen niedriger Dimension, Eigenschaften in 0 bis 2 Dimension der Korrelation von Elektronen uelemente Eigenschaften ale Ketten: Dispersion, Instabilitäten in stark anisotropen Systemen Spindichtewellen	en	
	One-dimensional metals, VCH notechnology, Wiley-VCH		
Empfohlene Vorkennt • Einführung in die			
-	nen moderner Physik nen der Nanoelektronik		

Moderne Aspekte der Physik

Seminar zu Vom Atom zum Festkörper			
SWS	Leistungspunkte:	Verantwortung	
2	3	Institut für Festkörperphysik	
Regelmäßigkeit: Sommersemest	er		
Inhalt: Nach Absprache mit den Dozent Festkörper belegt werden.	en. Das Seminar muss in Zusar	nmenhang mit der Vorlesung Vom Atom zum	
Grundlegende Literatur:			
Roth, Carroll, One-dimensional metals, VCH I. Markov, Crystal growth for beginners, World Scientific R. Waser, Nanotechnology, Wiley-VCH			
Empfohlene Vorkenntnisse:			
Einführung in die Festkörperphysik			
Modulzugehörigkeit:			
Ausgewählte Themen moderner Physik			
_	Ausgewählte Themen der Nanoelektronik		
Seminar			

Halbleiterphysik			
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Festkörperphysik	
Regelmäßigkeit: Winters		institute fur restror perpinysik	
Inhalt:			
 Energiebänder 			
Elektrischer TraDefekte	nsport		
DefekteOptische Eigens	chaften		
Quantenconfine			
 p-n-Übergänge 	bipolare Transistoren		
 Feldeffekttransi 			
 Herstellungsted 	hniken		
Grundlegende Literatur:			
P.Y. Yu, M. Card	ona, Fundamentals of Semicondu	octors, Springer	
	onductor devices, Physics and Tec		
Empfohlene Vorkenntni	sse:		
Einführung in die Fe	stkörperphysik		
-			

Ausgewählte Themen moderner Physik Ausgewählte Themen der Nanoelektronik

Halbleitermesstechnik in der Photovoltaik		
SWS Leistungspunk 2 3	Verantwortung Institut für Festkörperphysik	

Regelmäßigkeit: Wintersemester (ausgenommen Wintersemester 2018/19)

Inhalt: In der Vorlesung wird der Herstellungsprozess einer kristallinen Siliziumsolarzelle vom Siliziumblock bis zur Solarzelle betrachtet. Die jeweiligen Analyseverfahren zur Beurteilung der einzelnen Prozesse werden vorgestellt und erklärt. Dieses sind insbesondere Analyseverfahren zur:

- Material Charakterisierung: Leitfähigkeit, Ladungsträgerdichte, Ladungsträgerlebensdauer (Photolumineszenz, Photoleitfähigkeit, Thermografie), Defekte (Deep Level Transient Spectroscopy, Ladungsträgerlebensdauerspektroskopie, Infrarot-Spektroskopie), Kristallorientierung (Electron Back Scattering Diffraction)
- Prozess Charakterisierung: Dotierprofile (Electrochemical Capacitance Voltage Profiling), Textur (Rasterelektonenmikroskpie, Reflexion), Ladungsträgerlebensdauer (Photolumineszenz, Photoleitfähigkeit, Thermografie), Schichtdicke und Brechungsindex (Ellipsometrie, Infrarot-Spektroskopie)
- Solarzellen Charakterisierung: Strom-Spannungs-Kennlinie, Quanteneffizien, Reflexion, Shuntanalyse (Thermografie), Serienwiderstand (Transmission Line Method, Photolumineszenz)

Grundlegende Literatur:

- D.K. Schroder, Semiconductor Material and Device Characterization (2nd ed.), Wiley (1998)
- S. M. Sze, Semiconductor Devices: Physics and Technology, Wiley (1985)
- Bergmann, Schaefer, Lehrbuch der Experimentalphysik Bd. 6: Festkörper, de Gruyter (1992)

Empfohlene Vorkenntnisse:

- Einführung in die Festkörperphysik
- Halbleiterphysik
- Physik der Solarzelle

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik

Rastersondentechnik			
SWS 2	Leistungspunkte: Verantwortung 2 Institut für Festkörperphysik		
Regelmäßigkeit: Wintersen	nester		
Inhalt: Rastertunnelmikroskopie Zustandsdichten und Transmissionswahrscheinlichkeiten Rastertunnelspektroskopie Kraftmikroskopie auftretende Kräfte an Oberflächen Detektion lokaler elektrischer und magnetischer Felder, Reibungsbilder Rasterelektronenmikroskpie			
	ı, R. Bennewitz, Scanning prot Scanning probe methods, Spri	ne microscopy : the lab on a Tipp, Springer inger	
Empfohlene Vorkenntnisse	:		
Einführung in die Festkörperphysik			
Modulzugehörigkeit: • Ausgewählte Themen r	noderner Physik		

Ausgewählte Themen der Nanoelektronik

Moderne Aspekte der Physik

Molekulare Elektronik	Molekulare Elektronik			
SWS 2	Leistungspunkte: Verantwortung 2 Institut für Festkörperphysik			
Regelmäßigkeit: Sommersemest	er			
Inhalt:				
Grundlegende Literatur: J. Tour, Molecular electronics, World scientific 2002 Organische Festkörper, Schwoerer, Wolf, Wiley				
Empfohlene Vorkenntnisse: • Einführung in die Festkörperphysik				
 Modulzugehörigkeit: Ausgewählte Themen moderner Physik Ausgewählte Themen der Nanoelektronik Moderne Aspekte der Physik 				

Methoden der Oberflächenanalytik				
SWS 2	Leistungspunkte: Verantwortung 2 Institut für Festkörperphysik			
Regelmäßigkeit: Sommersemest	er			
 Vakuumtechnik und Promote Methoden der chemisch XPS, UPS, AES, EELS, ISS Bestimmung der geome STM, AFM, FIM, LEED, Som Analyse der Elektronens UPS, XPS, IPES, NEXAFS 	nen Analyse: 5, TDS, ESD etrischen Struktur: EM struktur:			
Grundlegende Literatur: D.P. Woodruff, T.A. Delchar, Modern Techniques of Surface Sciencem, Cambridge University Press H. Bubert, H. Jenett, Surface and Thin Film Analysis, Wiley-VCH Springer Series in Surface Science				
Empfohlene Vorkenntnisse: • Einführung in die Festkörperphysik				
Modulzugehörigkeit: • Ausgewählte Themen mode • Ausgewählte Themen der Na	•			

• Moderne Aspekte der Physik

Laborpraktikum Methoden der Oberflächenanalytik				
SWS	Leistungspunkte:	Verantwortung		
3	3	Institut für Festkörperphysik		
Regelmäßigkeit: Sommerseme	ster			
Inhalt:				
Passende Versuche, z.B. mit XPS, UPS, LEED, EELS. Das Praktikum muss in Zusammenhang mit der Vorlesung Methoden der Oberflächenanalytik belegt werden.				
Grundlegende Literatur:				
 D.P. Woodruff, T.A. Delchar, Modern Techniques of Surface Sciencem, Cambridge University Press H. Bubert, H. Jenett, Surface and Thin Film Analysis, Wiley-VCH Springer Series in Surface Science 				
Empfohlene Vorkenntnisse:				
Einführung in die Festkörperphysik				
Modulzugehörigkeit:				
Ausgewählte Themen moderner Physik				
	, usgewante memer der vanoeiekaonik			
Moderne Aspekte der Physik				

Physik der Nanostrukturen			
SWS 2+1	Leistungspunkte: Verantwortung 5 Institut für Festkörperphysik		
Regelmäßigkeit: nicht regelm	äßig		
Inhalt: Grundlagen Nanostrukturen Moderne ein- und zweidimensionale Strukturen Spektroskopiemethoden			
Grundlegende Literatur: Wird in der Vorlesung bekannt gegeben			
Empfohlene Vorkenntnisse: • Einführung in die Festkörperphysik			
Modulzugehörigkeit: • Ausgewählte Themen moderner Physik			

Ausgewählte Themen der Nanoelektronik

Optische Spektroskopie von Festkörpern			
SWS	Leistungspunkte:	Verantwortung	
2	2	Institut für Festkörperphysik	
Regelmäßigkeit: Wintersemeste	r		
Inhalt: • Kurzpulslaser • Licht-Materie-Wechselwirkung • Pump-Abfrage Techniken • Zeitaufgelöste Photolumineszenz • Polarisation (Jones-Matrix, Stokes-Vektor) • Halbleiteroptik • Physikalische Grenzen der Zeitauflösung und Messempfindlichkeit • Rauschen als Messgröße			
Grundlegende Literatur:			
 Jean-Claude Diels, Wolfgang Rudolph, "Ultrashort Laser Pulse Phenomena", Academic Press C. Klingshirn, "Semiconductor Optics" Second Edition, Springer 			
Empfohlene Vorkenntnisse:			
Einführung in die Festkörperphysik			
Modulzugehörigkeit:			
Ausgewählte Themen model	Ausgewählte Themen moderne Physik		
Ausgewählte Themen der Na	anoelektronik		

Quantenstrukti				
SWS	Leistungspunkte:	Verantwortung		
3+1	5	Institut für Festkörperphysik		
Regelmäßigkeit: So	mmersemester			
Inhalt:				
 Quantenef 	fekte in Halbleiterstrukturen			
•	idimensionaler Elektrongase			
 Quantendr 				
Quantenpu Kohöranz	ınkte und Wechselwirkungseffekte			
	ronentunneltransistor			
	Quantencomputing			
Grundlegende Liter	atur:			
	ch, B. Vinter, <i>Quantum Semiconductor</i> S			
	Semiconductor Devices: Physics and Tech	5,		
M.J. Kelly,	Low-Dimensional Semiconductors: Mai	terials, Physics, Technology, Devices, Oxford University Press		
Empfohlene Vorker	nntnisse:			
 Einführung in d 	ie Festkörperphysik			
_	e Festkörperphysik			
Modulzugehörigkei	t:			
	nemen moderner Physik			

Leibniz Universität Hannover

Ausgewählte Themen der Nanoelektronik

Quantenstrukturbauelemente (Pflichtbereich Master Nanotechnologie)

Physik der Solarzelle			
SWS 2+2	Leistungspunkte: 5		
Regelmäßigkeit: Som	mersemester		
Transport voMechanismeHerstellungsCharakterisie	undlagen enschaften von Halbleitern n Elektronen und Löchern n der Ladungsträger-Rekombinatior verfahren für Solarzellen erungsmethoden für Solarzellen en und Grenzen der Wirkungsgradve		
	rur: Thysik der Solarzellen" (Spektrum Aka Jer, B. Voß, J. Knobloch, "Sonnenene		
Empfohlene Vorkenn • Einführung in die	tnisse: E Festkörperphysik		
Modulzugehörigkeit: • Moderne Aspekte	e der Physik		

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Wahlveranstaltung im Masterstudiengang Nanotechnologie

Seminar "Aktuelle Forschungsfragen der Photovoltaik"			
SWS 2	Leistungspunkte: Verantwortung 3 Institut für Festkörperphysik		
Regelmäßigkeit: Wintersemeste	r		
Inhalt: • Aktuelle Themen der Photovoltaik-Forschung			
Grundlegende Literatur:			
☐ Wird im Seminar bereitgestellt			
Empfohlene Vorkenntnisse:			
Vorlesungen Einführung in die FestkörperphysikPhysik der Solarzelle			
Modulzugehörigkeit: Moderne Aspekte der Physik			

Einführung in die elektronische Messdatenerfassung und -verarbeitung mit LabView			
SWS	Leistungspunkte:	Verantwortung	
2	5	Institut für Festkörperphysik	
Regelmäßigkeit: Wintersemester			
Kompetenzziele:			
Die Studierenden erlernen experimentelle Methoden der computergestützten elektronischen Messdatenerfassung sowie die Weiterverarbeitung dieser Daten mit der grafischen Programmierumgebung LabView, die vielfach in Forschung und Industrie eingesetzt wird. Sie kennen die physikalischen Funktionsprinzipien der verwendeten Sensoren und sind in der Lage, damit messtechnische Aufgabenstellungen selbständig zu lösen, die Daten mit dem Computer weiterzuverarbeiten und die Unsicherheit der Ergebnisse zu analysieren.			
Inhalt:			
Grundlegende Literatur: W. Georgi, P. Hohl, Einführung in LabView, Hanser-Verlag W. Demtröder, Experimentalphysik 1: Mechanik und Wärme, Springer Verlag W. Demtröder, Experimentalphysik 2: Elektrizität und Optik, Springer Verlag E. Hering, K. Bressler, J. Gutekunst, Elektronik für Ingenieure und Naturwissenschaftler, Springer Verlag			
Empfohlene Vorkenntnisse:			
Vorlesungen Mechanik und Wärme sowie Elektrizität und Relativität			
Eingangsvoraussetzungen/Teilnehmerbegrenzung: 20 TeilnehmerInnen, Anmeldung über Stud.IP erbeten			
Modulzugehörigkeit:			
Moderne Aspekte der Physik			
Ausgewählte Themen moderner Physik			
•	Elektronik und Messtechnik		
Naturwissenschaftlich-Technischer Wahlbereich Meteorologie			

Laborpraktikum Festkörperphysik		
SWS 6	Leistungspunkte:	Verantwortung Institut für Festkörperphysik

Regelmäßigkeit: Winter- und Sommersemester

Inhalt:

- Quantenhalleffekt
- Epitaxie
- Vakuumtechnik
- Bindungszustände an Oberflächen und Grenzflächen
- Beugungsverfahren mit Röntgenstrahlen und langsamen Elektronen
- Tunnelmikroskopie und -spektroskopie
- Nanostrukturierung, Elektronenstrahllithographie
- Elektronenmikroskopie
- Resonantes Tunneln

Grundlegende Literatur:

wird im Praktikum angegeben

Empfohlene Vorkenntnisse:

• Einführung in die Festkörperphysik

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik

Seminar Aktuelle Forschungsthemen der Festkörperphysik		
SWS 2	Leistungspunkte:	Verantwortung Institut für Festkörperphysik

Regelmäßigkeit: Sommersemester

Inhalt:

Problemstellungen der aktuellen Forschung, z.B. aus den Themenfeldern:

- Ultradünne metallische Schichten
- Phasenübergänge in zwei Dimensionen
- Molekulare Elektronik
- Defektanalyse an Siliziumwafern
- Isolatorepitaxie
- Nanostrukturierte Metall/Isolator-Systeme
- Elektronenstrahllithographie und optische Lithographie
- Strukturierung von Halbleiterbauelementen mit einem Rasterkraftmikroskop
- Resonantes Tunneln durch InAs Quantenpunkte
- Hochfrequenzexperimente im Quanten-Hall-Effekt
- Elektron-Phonon-Wechselwirkung in Quanten-Hall-Systemen
- Transportexperimente in Si/SiGe-Heterostrukturen
- Rauschen in niedrigdimensionalen Elektronensystemen
- Spinelektronik in Halbleitern
- Optik im Quanten-Hall-Regime

Grundlegende Literatur:

wird zum jeweiligen Thema benannt

Empfohlene Vorkenntnisse:

Fortgeschrittene Festkörperphysik

Modulzugehörigkeit:

• Seminar

Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern				
SWS 2	SWS Leistungspunkte: Verantwortung 2 Institut für Festkörperphysik			

Regelmäßigkeit: Wintersemester

Inhalt:

Die elektronischen und optischen Eigenschaften von Halbleitern werden vielfach von Defekten bestimmt, die unabsichtlich (z.B. durch Kristallzucht und Prozessierung) oder auch absichtlich (z.B. als Dotierung) eingebracht werden. Diese Lehrveranstaltung behandelt die Thermodynamik, Kinetik und Struktur solcher Defekte unter besonderer Berücksichtigung halbleiterspezifischer Probleme, Konzepte und Methoden. Neben grundlegender Behandlung der relevanten Ansätze werden Querverbindungen zu technologischen Anwendungen in der Photovoltaik, Mikro- und Optoelektronik besprochen.

Grundlegende Literatur:

Wird in der Vorlesung bekannt gegeben

Empfohlene Vorkenntnisse:

• Grundlagen der Halbleiterphysik, z.B. im Rahmen der Festkörperphysik-Vorlesungen.

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik

Physik in Nanostrukturen				
SWS 2+1	Leistungspunkte: Verantwortung 4 Institut für Festkörperphysik			
Regelmäßigkeit: Sommersemest	er			
 Elektronische Struktur, Quantensize Effekte Transportsignaturen in Magnetowiderstandsef Quantenhall Effekt, u.a Instabilitäten 1-dimens Einzelelektronen Transi Molekulare Elektronik Experimentelle Method Grundlegende Literatur: Crytsal Growth for Beginnen 	Grenzflächenzustände mesoskopischen Systeme fekte . in Graphen sionaler Strukturen storen en			
Surface Science: An Introduction, Philip Hofmann (kindle.edition) Nanoelectronics and Information Technology, Rainer Waser (Wiley)				
 Einführung in die Festkörperphysik Oberflächenphysik 				
Modulzugehörigkeit: Moderne Aspekte der Physik	,			

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Nichtlineare Optik			
SWS 3+1	Leistungspunkte: 5	Verantwortung Institut für Quantenoptik	
Regelmäßigkeit: Somm	ersemester	,	
 Kristalloptik, T Wellengleichu Frequenzverdo Optisch param Phasenanpassi Elektro-optisch Elektro-akustis Frequenzverdro Raman-, Brillo 	ng mit nichtlinearen Quelltermen pplung, Summen-, Differenzfreque etrischer Verstärker, Oszillator Ings-Schemata, Quasiphasenanpa	ssung	
Boyd, Nonlined Shen, Nonlined	inear Fiber optics, Academic Press ar Optics, Academic Press ar Optics, Wiley-Interscience Book of nonlinear crystals, Springe	er	
Empfohlene Vorkenntr • Atom- und Molekü			
Modulzugehörigkeit: • Moderne Aspekte d • Ausgewählte Them	er Physik en moderner Physik		

Ausgewählte Themen der Photonik

Photonik		
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Quantenoptik
Regelmäßigkeit: Win	tersemester	
 Photonische Wellenleiter Nichtlineare Faseroptisch Faserlaser Laserdioden, 	: Wellenleiter (planar, Glasfaser), int Kristalle – Moden Faseroptik	, Fiber-Bragg-Gratings, Modulatoren)
Grundlegende Literat Reider, Photo Menzel, Photo Agrawal, No. Originallitera	onik, Springer tonik, Springer nlinear Fiber optics, Academic Press	
Empfohlene VorkennKohärente OptikNichtlineare Opti		
	men moderner Physik men der Photonik	

Seminar zu Photonik			
SWS 2	Leistungspunkte:	Verantwortung Institut für Quantenoptik	
Regelmäßigkeit: Wintersemeste	r		
Inhalt: Nach Absprache mit den Dozento	en. Das Seminar muss in Zusam	menhang mit der Vorlesung Photonik belegt werden.	
Grundlegende Literatur: Reider, Photonik, Spring Menzel, Photonik, Sprin Agrawal, Nonlinear Fibe Originalliteratur			
Empfohlene Vorkenntnisse:			
Kohärente OptikNichtlineare Optik			
 Modulzugehörigkeit: Ausgewählte Themen moder Ausgewählte Themen der Ph Seminar Seminar zu Photonik (Wahlt 	-	e)	

Atomoptik	Atomoptik		
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Quantenoptik	
Regelmäßigkeit: Somme	rsemester		
 Atome in optisc 	kkräfte nfallen Evaporation Condensation	-	
	Joachain, <i>Physics of Atoms and M</i> Quantum Theory of Light, OUP, 19		
Empfohlene Vorkenntni	sse:		
Atom- und MolekülpQuantenoptik	physik		
Modulzugehörigkeit: • Ausgewählte Theme • Ausgewählte Theme			

Laborpraktikum Optik		
SWS	Leistungspunkte:	Verantwortung
6 (Praktikum)	6	Institut für Quantenoptik

Regelmäßigkeit: Winter- und Sommersemester

Inhalt:

- Resonante Leistungsüberhöhung ("Power-Recycling")
- Interferometrische Gasdichtebestimmung
- Magnetooptische Falle
- Faserlaser
- Dielektrische Schichten für die Optik
- Sättigungsspektroskopie mit Diodenlaser
- optische Pinzette
- Ultrakurzpulslaser

Grundlegende Literatur:

wird im Praktikum angegeben

Empfohlene Vorkenntnisse:

Kohärente Optik

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Festkörperlaser			
SWS 2			
Regelmäßigkeit: Sommersemest	er		
Inhalt: Festkörperlasermedien Optische Resonatoren Betriebsregime von Lase Diodengepumpte Festkö Bauformen: Faser, Stab, Durchstimmbare Laser Single-frequency Laser Ultrakurzpulslaser Frequenzkonversion	irperlaser		
Grundlegende Literatur (Literaturempfehlung): W. Koechner: Solid-State Laser Engineering A.E. Siegman: Lasers O. Svelto: Principles of Lasers			
Empfohlene Vorkenntnisse: • Veranstaltungen "Kohärente Optik" bzw. "Nichtlineare Optik"			
 Modulzugehörigkeit: Ausgewählte Themen moderner Physik Ausgewählte Themen der Photonik 			

Optische Schichten		
SWS 2 + 1	Leistungspunkte:	Verantwortung Institut für Quantenoptik

Regelmäßigkeit: Wintersemester

Inhalt:.

- Bedeutung, Funktionsprinzip und Anwendungsbereiche optischer Schichten, gegenwärtiges Qualitätsniveau von Schichtsystemen für die Lasertechnik)
- Theoretische Grundlagen (Sammlung bekannter Formeln und Phänomene, Berechnung von Schichtsystemen)
- Herstellung optischer Komponenten (Substrate, Beschichtungsmaterialien, Beschichtungsprozesse, Kontrolle von Beschichtungsvorgängen)
- Optikcharakterisierung (Messungen des Übertragungsverhaltens: Verluste: Totale Streuung, optische Absorption, Zerstörschwellen optische Laserkomponenten, nichtoptische Eigenschaften)

Grundlegende Literatur (Literaturempfehlung):

- Wird in der Vorlesung bekannt gegeben, zur Einführung in das Thema:
- zur Einführung: Macleod, H.A.: Thin Film Optical Filters, Fourth Edition, CRC Press 2010

Empfohlene Vorkenntnisse:

• Veranstaltungen "Kohärente Optik" bzw. "Nichtlineare Optik"

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik

Data Analysis		
SWS 2	Leistungspunkte: 2	Verantwortung Institut für Gravitationsphysik

Regelmäßigkeit: Sommersemester

Inhalt:

- Detektoren (Interferometer und "resonant mass"-Detektoren)
- Datenanalyse
- Templates
- Vetos

Grundlegende Literatur:

wird in der Vorlesung bekannt gegeben.

Empfohlene Vorkenntnisse:

- Grundlagen der Speziellen Relativitätstheorie
- Kohärente Optik

Modulzugehörigkeit:

• Ausgewählte Themen moderner Physik

Grundlagen der Laser	medizin und Biomedizinischen Optik	
Semesterlage	Wintersemester	
Modulverantwortliche(r)	Alexander Heisterkamp, Holger Lubatschowski	
Lehrveranstaltungen (SWS)	Grundlagen der Lasermedizin und Biophotonik	
Leistungsnachweis zum Erwerb der LP	Studienleistung: regelmäßig Teilnahme, Teilnahme am Blockseminar & Exkursion Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten	
Notenzusammensetzung	Note der Prüfungsleistung	
Leistungspunkte (ECTS): 4 Gewicht 1	Präsenzstudium (h): 45 Selbststudium (h): 30	

Kompetenzziele:

Die Studierenden werden an die Grundlagen der Laser-Gewebe-Wechselwirkung herangeführt und lernen diese an klinisch relevanten Anwendungsbeispielen umzusetzen. In Tutorien und im Blockseminar (am Ende des Semesters) werden aktuelle Originalartikel erarbeitet und diskutiert.

Am Ende der Veranstaltung findet eine Exkursion in die Forschungslabore des LZH und der Firma Rowiak statt.

Inhalte:

- Lasersysteme für den Einsatz in Medizin und Biologie
- Strahlführungssysteme und optische medizinische Geräte
- Optische Eigenschaften von Gewebe
- Thermische Eigenschaften von Gewebe
- Photochemische Wechselwirkung

- Vaporisation/Koagulation
- Photoablation, Optoakustik
- Photodisruption, nichtlineare Optik
- Anwendungen in der Augenheilkunde, refraktive Chirurgie
- Laser-basierte Diagnostik, optische Biopsie
- Optische Kohärenztomographie, Theragnostics
- klinische Anwendungsbeispiele

•

Grund	legende l	Literatur:
-------	-----------	------------

- Eichler, Seiler: "Lasertechnik in der Medizin." Springer-Verlag
- Berlien: "Applied Laser Medicine"
- Bille, Schlegel: Medizinische Physik. Bd. 2: Medizinische Strahlphysik, Springer
- Welch, van Gemert: "Optical-Thermal Response of Laser-Irradiated Tissue." Plenum Press
- Originalliteratur

Empfohlene Vorkenntnisse:

Modul "Kohärente Optik"

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: begrenzte Anzahl von Vorträgen im Blockseminar (20 Plätze, 5 ECTS), Teilnahme an Vorlesung und Blockseminar unbegrenzt (4ECTS)

Verwendbarkeit:

- Bachelorstudiengang Physik/Techn. Physik (Vertiefungsphase, Moderne Aspekte der Physik)
- Masterstudiengang Physik/Technische Physik (Fortgeschrittene Vertiefungsphase, Moderne Aspekte der Physik)

Neutron Stars and Black Holes SWS Leistungspunkte: Verantwortung Institut für Gravitationsphysik Regelmäßigkeit: Sommersemester

Inhalt:

- Quellen und Ausbreitung von Gravitationswellen
- Neutronensterne und Schwarze Löcher

Grundlegende Literatur:

wird in der Vorlesung bekannt gegeben.

Empfohlene Vorkenntnisse:

- Grundlagen der Speziellen Relativitätstheorie
- Kohärente Optik

Modulzugehörigkeit:

• Ausgewählte Themen moderner Physik

Seminar Gravitationswellen			
SWS 2	Leistungspunkte:	Verantwortung Institut für Gravitationsphysik	
Regelmäßigkeit: Sommersemester			
Inhalt: Nach Absprache mit den Dozent	en		
Grundlegende Literatur: wird in den Vorlesungen und der	m Seminar bekannt gegeben.		
Empfohlene Vorkenntnisse:			
 Grundlagen der Speziellen Relativitätstheorie Kohärente Optik 			
Modulzugehörigkeit:			
Ausgewählte Themen moderner Physik			

Seminar Gravitationsphysik		
SWS 3	Leistungspunkte:	Verantwortung Institut für Gravitationsphysik
Regelmäßigkeit: Sommersem	ester und Wintersemester	
Inhalt: Allgemeine Relativitätstl Quellen von Gravitations Gravitationswellendetek Astrophysik und Kosmolo Grundlegende Literatur:	swellen toren	
wird im Seminar bekannt gegeben.		
Empfohlene Vorkenntnisse: • Gravitationsphysik		
Modulzugehörigkeit: • Ausgewählte Themen mo • Seminar	oderner Physik	

Laserinterferomet	rie	
SWS 3	Leistungspunkte:	Verantwortung Institut für Gravitationsphysik
Regelmäßigkeit: Somm	ersemester oder Wintersemester (u	unregelmäßig)
 thermisches F Mechanische G Michelson-, M Anwendungen Beschreibung Transformation Auslesemethon Polarisation 	Güten von aufgehängten Optiken lach-Zehnder- und Fary-Perot Inter zur Messung von Gravittationswel Gauss'scher Strahlen und höherer N n Gauss'scher Strahlen	rferometer llen und des Erdschwerefeldes
Grundlegende Literatu Saulson, Fund Siegman: Lase Yariv: Quantui	amentals of Interferometric GW det rs	tectors, World Scientific Pub Co Inc
Empfohlene Vorkenntr Optik, Komplexe lineare		
Modulzugehörigkeit:		

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik

Laborpraktikum Laserinterferometrie		
SWS 4	Leistungspunkte:	Verantwortung Institut für Gravitationsphysik
Regelmäßigkeit: Sommerse	emester oder Wintersemester (u	nregelmäßig)
 "Power-u. Signalre Modulationsfelder Homodyn und Het Spektrale Rauschd Interferometerraus 	ichte	xtraction", "Delaylines"
Grundlegende Literatur: Saulson, Fundame Originalliteratur	ntals of Interferometric GW det	ectors, World Scientific Pub Co Inc
Empfohlene VorkenntnisseKohärente OptikNichtlineare Optik	::	
Modulzugehörigkeit: • Ausgewählte Themen	moderner Physik	

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik

Laserstabilisierung und Kontrolle optischer Experimente		
SWS 2	Leistungspunkte:	Verantwortung Institut für Gravitationsphysik
Regelmäßigkeit: Sommersemes	ter /Wintersemester (unregelma	äßig)
 Grundlagen der Regelu Längenkontrolle von In Detektion von Frequenz 	von Leistungs-, Frequenz- und S ngstechnik terferometern und optischen Ro efluktuationen und deren Unter sfluktuationen und deren Unter	esonatoren drückung
Grundlegende Literatur:		
 Siegman, Lasers, University Science Books Yarif, Optical Elektronics in Modern Communications, Oxford University Press Abramovici, Chapsky, Feedback Control Systems 		
Empfohlene Vorkenntnisse:		
Kohärente Optik		
Modulzugehörigkeit: • Ausgewählte Themen mode • Ausgewählte Themen der Pl	•	

Laborpraktikum Cluster Computing		
SWS 4	Leistungspunkte: 4	Verantwortung Institut für Gravitationsphysik
Regelmäßigkeit: Sommerse	mester und Wintersemester	
template banks andmismatch statistichandle cluster reso	ources using HTCondor versus sensitivity of the analysis	
Empfohlene Vorkenntnisse • Erfahrung mit Linux	:	
Modulzugehörigkeit: • Moderne Aspekte der P • Ausgewählte Themen n		

Nichtklassisches Licht				
SWS	Leistungspunkte:	Verantwortung		
2	2	Institut für Gravitationsphysik		
Regelmäßigkeit: Wintersemeste	r, (unregelmäßig)			
Inhalt: • Klassische und nichtk	lassische Zustände des Licht			
 Kriterien für "Nichtkla 				
	ung von Fock-Zuständen			
	ung von gequetschtem Licht			
Quantenzustandstom FPR_verschränktes (zw.)				
	 EPR-verschränktes (zwei-Moden gequetschtes) Licht Optischer Test der Nichtlokalität 			
Grundlegende Literatur:				
C.C. Gerry und P.L. Knig	ht, Introductory Quantum Opt	cs, University Press, Cambridge (2005).		
HA. Bachor und T.C. Ralph, <i>A guide to experiments in quantum optics</i> , Wiley, 2nd edition (2003).				
Empfohlene Vorkenntnisse:				
 Kohärente Optik 				
Quantenoptik				
Nichtlineare Optik				
,				
Modulzugehörigkeit:				
Ausgewählte Themen moderner Physik				
,				

Ausgewählte Themen der Photonik

Nichtklassische Laserinterferometrie			
	Leistungspunkte: 2	Verantwortung Institut für Gravitationsphysik	
Regelmäßigkeit: Sommersemeste	er (unregelmäßig)		
 Quadraturoperatoren un Das Standard Quantenlir "Quantum-Nondemolitio Interferometer mit geque Opto-mechanische Kopp Quantenzustände mechanische 	etschtem Licht und anderen ni olung und optische Federn anischer Oszillatoren Oszillatoren in ihren quantenm	von Interferometern ichtklassischen Zuständen des Lichts	
Grundlegende Literatur:	of later forms a tric CIM data store	Wastal Cainstiff a Duk Ca lan	
Saulson, Fundamentals of Originalliteratur	of Interferometric GW detector.	s, World Scientific Pub Co Inc	
Empfohlene Vorkenntnisse:			
Kohärente OptikNichtlineare OptikNichtklassisches LichtQuantenoptik			
Modulzugehörigkeit:			

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik

Elektronische Metrologie im Optiklabor		
SWS 2	Leistungspunkte:	Verantwortung Institut für Gravitationsphysik
Regelmäßigkeit: Sommersemest	er oder Wintersemester (unreg	elmäßig)
 Operationsverstärker: Fi Schwingkreise und Filte Spectrum Analyser und Messung und Interpreta Grundlagen der Regelun Photodetektion 	Network Analyser ation von Transferfunktionen	
Grundlegende Literatur:		
	t of Electronics, Cambridge Uni Feedback Control Systems, Klu nics, Wiley	
Empfohlene Vorkenntnisse:		
Kohärente Optik		
Modulzugehörigkeit: • Ausgewählte Themen mode	rner Physik	

Physics of Life		
SWS 2	Leistungspunkte:	Verantwortung Institute der Experimentalphysik

Regelmäßigkeit: Sommersemester

Kompetenzziele:

Die Studenten erwerben ein interdisziplinäres Verständnis der komplexen physikalischen und chemischen Prozesse in lebendigen Objekten. Sie erlernen die Fähigkeit, biologische Prozesse aus den verschiedenen naturwissenschaftlichen Blickwinkeln zu betrachten und zu analysieren. Sie sind in der Lage, die zunehmend wichtigere Rolle der Biologie in der Forschung mit anderen Forschungsdisziplinen zu verknüpfen.

Inhalt:

Die Vorlesung richtet sich an alle Studierenden, die Interesse an der Schnittstelle zwischen Physik, Biologie und Medizin haben. Die klassischen Disziplinen (Physik, Chemie) werden durch interdisziplinäre Forschung zunehmend mit den Lebenswissenschaften verbunden. Das erfordert, über den Tellerrand der einzelnen Disziplinen zu schauen. Diese Spezialvorlesung bietet einen Einblick in die Physik lebendiger Materie und stellt existierende und zukünftige interdisziplinäre Forschungsziele dar.

Grundlegende Literatur:

wird in der Vorlesung angegeben

Empfohlene Vorkenntnisse:

Vorlesungen Experimentalphysik

- Ausgewählte Themen moderner Physik
- Moderne Aspekte der Physik

Bionische Oberflächen durch Laserstrahlung		
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Quantenoptik (Fadeeva)

Regelmäßigkeit: Wintersemester

Kompetenzziele:

Am Ende des Kurses werden Studierende mit dem Prozess des bionischen Arbeitens vertraut sein und können diesen für die Ideenfindung in der Forschung anwenden.

Die Studierende lernen das Arbeiten mit aktueller wissenschaftlicher Literatur mithilfe verschiedener Datenbanken und der Systematisierung von Rechercheergebnissen mit einem Literaturverwaltungsprogramm.

Die Studierende lernen die Präsentation der Ergebnisse und die Führung von wissenschaftlicher Diskussionen.

Inhalt:

- Einführung in die Bionik: Wesen der Bionik, Abgrenzung zwischen bionischen und konventionalen Verfahren, bionische Produkte und Prozesse
- Prozess des bionischen Arbeitens: Ideenfindung, Analyse, Abstraktion und Analogie, von der Planung zur Invention
- Bionische Oberflächen: gezielter Flüssigkeitstransport, Benetzungsoptimierung, Adhäsion, optische Effekte
- Laserbasierte Verfahren zur Herstellung bionischer Oberflächen: Ablation, Zweiphotonenpolymerisation,
 Laser Induced Forward Transfer (LIFT), Nanopartikel-Generierung
- Anwendung bionischer Oberflächen in der Biomedizintechnik: Optimierung der Grenzflächen Gewebe/Implantaten.

Grundlegende Literatur:

Wird während der Vorlesung bekanntgegeben

Eingangsvoraussetzungen/Teilnehmerzahlbegrenzung:

begrenzte Anzahl von Vorträgen im Blockseminar (20 Plätze), Teilnahme an Vorlesung und Blockseminar unbegrenzt

- Ausgewählte Themen moderner Physik
- Naturwissenschaftlich-technischer Wahlbereich (Meteorologie)

Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie		
SWS 2	Leistungspunkte: 2	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Wintersemester	ſ	
Inhalt: Ausgehend von Eigenschaften der Atomkerne werden die sie beschreibenden Kernmodelle eingeführt. Phänomenologie des radioaktiven Zerfalls und Theorien zur Beschreibung von alpha, beta und gamma Zerfall. Einführung in die Neutronenphysik, Kernreaktionen, Spaltung, Fusion. Erzeugung überschwerer Elemente. Zum Verständnis von Dosimetrie der Strahlenexposition werden Wechselwirkungen von Strahlung mit Materie, Strahlenmessverfahren und das Verhalten radioaktiver Kerne in biologischen und ökologischen Systemen behandelt. Voraussetzung für den Erwerb der Fachkunde nach StrlSchV Fachkundegruppe S4.1 im MSc Studiengang Analytische Chemie		
Grundlegende Literatur: Kratz, Lieser Nuclear and radiochemistry: fundamentals and applications / Vol. 1&t 2, Ausgabe: 3., rev. ed. Weinheim: Wiley-VCH, 2013 Choppin, Rydberg, Liljenzin, Radiochemistry and Nuclear Chemistry, Butterworth Heinemann, Oxford, 1995 Marmier, Sheldon, Physics of Nuclei and Particles, 2 volumes, Academic Press, New York, 1970 Mayer-Kuckuk, Kernphysik (6. Aufl.) Teubner, Stuttgart, 1994 Knoll, Radiation detection and measurement, J. Wiley & Sons, New York, 2000 Vogt, Grundzüge des praktischen Strahlenschutzes 6. Auflage 2011, Hanser Verlag http://www.nucleonica.com/ : Karlsruhe Chart of Nuclides Strahlenschutzverordnung vom 20. Juli 2001 (BGBI. I S. 1714; 2002 I S. 1459), zuletzt geändert durch Artikel 5 Absatz7 des Gesetzes vom 24. Februar 2012 (BGBI. I S. 212)		
 Empfohlene Vorkenntnisse: Mechanik und Quantenmechanik Elektrodynamik Moleküle, Kerne, Teilchen, Statistik 		
Modulzugehörigkeit: • Moderne Aspekte der Physik • Ausgewählte Themen moderner Physik		

Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs		
SWS 2	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Wintersemester	r	
Inhalt: Trotz oder gerade wegen des Ausstiegs aus der Kernenergienutzung in Deutschland ist dieses Thema weiterhin Gegenstand der gesellschaftlichen Diskussion. In dieser Veranstaltung werden die technischen Grundlagen von Kernenergienutzung, von der Urangewinnung über die Funktionsweise heutiger und zukünftiger Reaktoren bis zur Entsorgung abgebrannten Kernbrennstoffs behandelt. Neben den technischen Aspekten wird begleitend die Problematik aus sozialwissenschaftlichen/ethischen und rechtlichen Gesichtspunkten erläutert und diskutiert (eigene Meinung erwünscht!)		
Grundlegende Literatur: Streffer, Radioactive Waste, Springer Michaelis, Handbuch Kernenergie Heinloth, Die Energiefrage, Vieweg Weitere Literatur wird in der Veranstaltung bekannt gegeben		
 Empfohlene Vorkenntnisse: Von Vorteil: Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" (Kann parallel gehört werden) Mechanik und Wärme Elektrodynamik Kerne, Teilchen, Festkörper 		
Modulzugehörigkeit: • Moderne Aspekte der Physik • Ausgewählte Themen moderner Physik		

Radioaktivität in der Umwelt und Strahlengefährdung des Menschen		
SWS 2	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Sommersemest	er	
Pfade radioaktiver Stoffe durch of Strahlenexposition und der mit i Strahlenexposition aufgrund der Jahrzehnten der Kernwaffentests	die Umwelt zum Menschen und hnen verbundenen Risiken. Im Kernwaffenexplosionen in Hir s, bei Unfällen in der Kerntechi unfälle, verlorene Quellen (Goia	licher Radionuklide in der Umwelt, beschreibt die d gibt eine Bewertung der resultierenden einzelnen werden folgende Themen behandelt: oshima und Nagasaki sowie den folgenden nik: Windscale, Three Mile Island, Chernobyl, ania) . Folgen des Uranbergbaus für Beschäftigte und apie.
Grundlegende Literatur: Richard Rhodes, The making of the Atomic Bomb Warner, Kirchmann Nuclear Test Explosions Mosey, Reactor Accidents Nuclear Engineering International Special Publications (2006) Shaw Radioactivity in the terrestrial environment, Elsevier, Amsterdam (2007) Eisenbud, Environmental Radioactivity David Atwood, Radionuclides in the Environment, Wiley and Sons, 2010 Weitere Literatur in der Vorlesung (Originalveröffentlichungen und web links)		
Empfohlene Vorkenntnisse: • Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"		
Modulzugehörigkeit: • Moderne Aspekte der Physik • Ausgewählte Themen mode		

Strahlenschutz und Radioökologie		
SWS 2	Leistungspunkte: 2	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Sommersemest	er	
Inhalt: Die Vorlesung behandelt ionisierende Strahlung, den radioaktiven Zerfall, die Wechselwirkung von Strahlung mit Materie, natürliche Radioaktivität, biologische Strahlenwirkungen, Konsequenzen für Dosis-Risiko Zusammenhänge, Einwirkung von radioaktiven Stoffen und ionisierender Strahlung auf den Menschen, Epidemiologie, Belastungspfade, radioökologische Modellierung der Wege radioaktiver Stoffe zum Menschen, Abschätzung von Strahlenrisiken, Strahlendosis und Strahlenrisiko, Dosis-Wirkungsbeziehungen, Konzept der Kollektivdosis, Strahlenschutzgrundsätze, Festlegung von Dosiswerten, Strahlenschutzmaßnahmen, gesetzliche Strahlenschutzregelungen, EURATOM Grundnormen, Grundsatzfragen des Strahlenschutz (mit der Möglichkeit zum Erwerb der Fachkunde (für SSB S 4.1) beim Umgang mit offenen radioaktiven Stoffen nach StrlSchV)		
Grundlegende Literatur: □ Vogt, Grundzüge des praktischen Strahlenschutzes 6. Auflage 2011, Hanser Verlag □ Siehl, Umweltradioaktivität, Ernst & Sohn Verlag Berlin (1996) □ Ahrens, Pigeot Handbook of Epidemiology, Springer Berlin Heidelberg New York (2205) □ Strahlenschutzverordnung vom 20. Juli 2001 (BGBI. I S. 1714; 2002 I S. 1459), zuletzt geändert durch Artikel 5 Absatz7 des Gesetzes vom 24. Februar 2012 (BGBI. I S. 212) □ Allgemeine Verwaltungsvorschrift zu § 47 Strahlenschutzverordnung: Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus Anlagen oder Einrichtungen, Drucksache 88/12 15.02.12 □ Weitere Literatur wird in der Veranstaltung bekannt gegeben		
 Empfohlene Vorkenntnisse: Notwendige Voraussetzung: Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" 		

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Nukleare Analysemethoden in der Radioanalytik		
SWS 2	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Wintersemeste	er	
Inhalt: Grundlagen der Analytik von radioaktiven Stoffen und Analytik mittels radioaktiver Stoffe. Messung von Strahlungsfeldern, Wechselwirkung Strahlung / Materie, Festköperkernspurdetektor, Alpha, Beta, Gamma Detektion, Neutronendetektion, Neutronenaktivierung, Laser-basierte Detektions- und Speziationsmethoden, Produktion und Charakterisierung superschwerer Elemente, Einsatz von Tracertechniken, Isotopenverdünnungsanalyse, Kernspektrometrie, Röntgenbasierte Analysetechniken, Mössbauer Spektroskopie, Kernspinresonanz Spektroskopie, Beschleuniger-Massenspektrometrie, Statistik, Nachweis- und Erkennungsgrenzen, Qualitätssicherung, DIN ISO 11929		
Grundlegende Literatur: Kratz, Lieser Nuclear and radiochemistry: fundamentals and applications / Vol. 1&t 2, Ausgabe: 3., rev. ed. Weinheim: Wiley-VCH, 2013 Vogt, Schultz: Grundzüge des praktischen Strahlenschutzes, 6. Aufl., Hanser Verlag München 2011, Choppin, Rydberg, Liljenzin, Radiochemistry and Nuclear Chemistry, Butterworth Heinemann, Oxford, 1995 Marmier, Sheldon, Physics of Nuclei and Particles, 2 vol., Academic Press, New York, 1970 Mayer-Kuckuk, Kernphysik (6. Aufl.) Teubner, Stuttgart, 1994 Knoll, Radiation detection and measurement, J. Wiley & Sons, New York, 2000 Gordon Gilmore, Practical Gamma Ray Spectrometry Wiley, & Sons, New York 2008 Http://www.nucleonica.com/ : Karlsruhe Chart of Nuclides Strahlenschutzverordnung vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), zuletzt geändert durch Artikel 5 Absatz7 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212)		
 Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" (Kann parallel gehört werden) 		

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Kernphysikalische Anwendungen in der Umweltphysik		
SWS 2	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Sommersemester		

Inhalt:

Die kernphysikalischen Grundlagen der stellaren Nukleosynthese und die Entstehung der Elemente in Brennprozessen in Sternen sowie Supernova Explosionen (r- uns s-Prozess) werden behandelt. Der Begriff der Isotopie wird eingeführt und physikalische und chemische Isotopie-Effekte besprochen. Sowohl natürliche Isotopie-Effekte als auch ihre technische Anwendung in der Isotopentrennung werden behandelt. Allgemein werden stabile und radioaktive Isotope als Tracer und Uhren in Geosphäre, Atmosphäre, Hydrosphäre, Pedosphäre und Biosphäre behandelt. Primäre, radiogene, kosmogene und nukleogene Anomalien der Isotopenhäufigkeiten werden vorgestellt im Hinblick auf Altersbestimmungen, z.B. das Alter der chemischen Elemente, die Formation des Sonnensystems und die Kollisionsgeschichte kleiner Körper im Sonnensystem. Die Kreisläufe von Elementen in der Umwelt werden mit Kompartmentmodellen behandelt und auf das Verhalten spezieller Nuklide wie H-3, Be-10, C-14, Cl-36 und I-129 in der Umwelt angewendet. Die physikalischen Grundlagen der Produktion kosmogener Nuklide in der Atmosphäre und ihre in-situ Produktion in der Erdoberfläche werden dargestellt. Stabile und radioaktive Isotope in den verschiedenen Umweltarchiven erlauben die Untersuchung der Entwicklung der allgemeinen Umweltbedingungen und anthropogener Veränderungen.

Grundlegende Literatur:

 g-1.ac =1a.
Davis, Meteorites, Comets and Planets
Siehl, <i>Umweltradioaktivität</i> , Ernst & Sohn Verlag Berlin (1996)
Oberhummer, Kerne und Sterne, Barth Verlagsgesellschaft, Leipzig (1993)
Choppin, Rydberg, Liljenzin, Radiochemistry and Nuclear Chemistry, Butterworth Heinemann, Oxford, 1995
Marmier, Sheldon, <i>Physics of Nuclei and Particles</i> , 2 vol., Academic Press, New York, 1970
T. Mayer-Kuckuk, Kernphysik (6. Aufl.) Teubner, Stuttgart, 1994
G.F. Knoll, Radiation detection and measurement, J. Wiley & Sons, New York, 2000
Http://www.nucleonica.com/ : Karlsruhe Chart of Nuclides

Empfohlene Vorkenntnisse:

- Optik, Atome, Moleküle, Quantenphänomene
- Kerne, Teilchen, Festkörper
- Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik

Radiochemie & Radioanalytik		
SWS 2	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz
Regelmäßigkeit: Wintersemester		

Inhalt:

Diese Vorlesung vermittelt Kenntnisse der chemischen und physikalischen Eigenschaften natürlicher und künstlicher Radionuklide, insbesondere der Actinide. Basierend auf element- bzw. gruppenspezifischen Eigenschaften werden quantitative radioanalytische Methoden und Separationstechniken vertieft. Der Vorlesungsinhalt verhält sich dabei komplementär zum Inhalt der Vorlesung "Nukleare Analysemethoden und Radioanalytik". Die Anwendung von Separationstechniken in Abhängigkeit verschiedener Matrizes wird diskutiert. Die einer Umweltprobenanalyse vorgelagerten gängigen Methoden zur Probennahme und -vorbereitung werden erläutert. Für die Anwendung mancher Separationstechniken ist ein Verständnis der Speziation interessierender Radionuklide unabdingbar. Dominierende, die Speziation beeinflussende Faktoren werden aufgezeigt. Ein verbindendes Thema stellt das Migrationsverhalten von Radionukliden in der Geo- und Biosphäre dar. Schwerpunkte sind chemische und physikalische Eigenschaften radioaktiver Elemente, aquatische Chemie der Radionuklide insbesondere der f-Elemente, quantitative Radioanalytik, Separationstechniken, Umweltprobennahme und -vorbereitung, Radioaktive Nuklide und Strahlung in der Medizin, Radionuklidproduktion, Verhalten von Radionukliden in der Umwelt

Grundlegende Literatur:

David Atwood, Radionuclides in the Environment, Wiley and Sons, 2010
Lehto, Hou, Chemistry and Analysis of Radionuclides, Wiley-VCH 2011

Empfohlene Vorkenntnisse:

- Grundlagen der Chemie
- Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"

Modulzugehörigkeit:

• Ausgewählte Themen moderner Physik

Einführung in die Massenspektrometrie			
SWS	Leistungspunkte:	Verantwortung	
2	2	Institut für Radioökologie und Strahlenschutz	
Regelmäßigkeit: Wintersemeste	r		
 Nach der Einführung massenspektrometrischer Grundkonzepte werden verschiedene Ionisations-, Massenselektions und Detektionsverfahren, sowie vakuumtechnische Aspekte erläutert. Gängige massenspektrometrische Methoden mit Schwerpunkt auf Element und Isotopenverhältnisanalysen, Bestimmung von Lösungsspezies und bildgebenden MS-Verfahren werden behandelt. Abschließend werden Hochpräszisionsmassenmessungen auch an extrem kurzlebigen Radionukliden und Antimaterie, wie auch der Einsatz von massenspektrometrischen Methoden in der Raumfahrt vorgestellt. Techniken: ICP-MS, AMS, IRMS, TIMS, RIMS, SIMS, ESI MS, Schottky MS, Isochrone MS, Penningfallen-MS 			
Grundlegende Literatur:			
Gross, Mass Spectrome	, , ,		
Becker, Inorganic mass spectrometry: principles and applications, Wiley (2007) Hoffmann, Stroobant, Mass spectrometry: principles and applications, Wiley (2007)			
Empfohlene Vorkenntnisse:			
• Mechanik			
Elektrodynamik Optik Atomoby sik Quantonokänomono			
Optik, Atomphysik, Quantenphänomene			
Modulzugehörigkeit: • Ausgewählte Themen moderner Physik			

Seminar/Praktikum Strahlenschutz und Radioökologie				
SWS 2	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz		
Regelmäßigkeit: Winter- und So	mmersemester			
Inhalt: Nach Absprache mit den Dozento	Inhalt: Nach Absprache mit den Dozenten			
Grundlegende Literatur: DVD mit Unterlagen aller Lehrveranstaltungen, auch verfügbar unter www.zsr.uni-hannover.de HG. Vogt, H. Schultz: Grundzüge des praktischen Strahlenschutzes, 3. Aufl., Hanser Verlag München 2004, G. Choppin, J. Rydberg, J.O. Liljenzin, Radiochemistry and Nuclear Chemistry, Butterworth Heinemann, Oxford, 1995 P. Marmier, E. Sheldon, Physics of Nuclei and Particles, 2 volumes, Academic Press, New York, 1970 T. Mayer-Kuckuk, Kernphysik (6. Aufl.) Teubner, Stuttgart, 1994 G.F. Knoll, Radiation detection and measurement, J. Wiley & Sons, New York, 2000 Karlsruher Nuklidkarte Strahlenschutzverordnung (StrlSchV)				
 Empfohlene Vorkenntnisse: Mechanik und Wärme Elektrizität und Relativität Optik, Atome, Moleküle, Quantenphänomene Kerne, Teilchen, Festkörper 				
Modulzugehörigkeit: Moderne Aspekte der Physik Ausgewählte Themen moderner Physik				

Fachkunde im Strahlenschutz						
sws	Leistungspunkte:	Verantwortung Institut für Radioökologie und Strahlenschutz				
min. 2 Regelmäßigkeit: Winter- und Sommersemester						

Inhalt:

Das IRS bietet Strahlenschutzkurse zur Erlangung der Fachkunde im Strahlenschutz gemäß Strahlenschutzverordnung und Röntgenverordnung an. Inhalte sind physikalische Grundlagen, Dosiskonzepte, biologische Strahlenwirkung sowie technische und organisatorische Strahlenschutzkonzepte und -regelungen.

Die Studierenden können je nach Interesse einen Strahlenschutzkurs aus dem Kursprogramm des IRS auswählen (www.strahlenschutzkurse.de). Der Umfang der Strahlenschutzkurse liegt zwischen 2 SWS und 6 SWS. Als zusätzliche Qualifikation berechtigt die Teilnahme an diesem Kurs zur Beantragung der "Fachkunde im Strahlenschutz" bei der zuständigen Behörde (Gewerbeaufsichtsamt). Daher werden für den Besuch des Kurses prinzipiell 2 Leistungspunkte vergeben, auch wenn die Dauer des Kurses 2 SWS übersteigt.

Grundlegende Literatur:

Vogt, Schultz:	Grundzüge des	praktischen	Strahlenschutzes,	6. Aufl.	, Hanser Ve	erlag Münd	chen 2011

Http://www.nucleonica.com/ : Karlsruhe Chart of Nuclides

Strahlenschutzverordnung vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), zuletzt geändert durch Artikel 5 Absatz7 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212)

Röntgenverordnung

Empfohlene Vorkenntnisse:

• Modul: Mechanik und Wärme

Modul: Elektrizität und Relativität

• Modul: Optik, Atome, Moleküle, Quantenphänomene

Modul: Kerne Teilchen, Festkörper

- Moderne Aspekte der Physik
- · Ausgewählte Themen moderner Physik

Lehrveranstaltungen der Meteorologie

Numerische Wettervorhersage						
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie				

Regelmäßigkeit: Sommersemester

Inhalt:

- Die Grundgleichungen
- Meteorologische Koordinatensysteme
- Kartenprojektionen
- Das Filterproblem
- Gefilterte Prognosemodelle
- Ungefilterte Prognosemodelle
- Initialisierung
- Zur numerischen Lösung des Gleichungssystems
- Die Vorhersagemodelle des DWD
- Prognoseprüfung

Grundlegende Literatur:

Roache, Computational Fluid Dynamics, Hermosa Publishers

Empfohlene Vorkenntnisse:

- Modul Einführung in die Meteorologie
- Kinematik und Dynamik

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Programmierpraktikum zur Numerischen Wettervorhersage				
SWS	Leistungspunkte:	Verantwortung		
2	4	Institut für Meteorologie und Klimatologie		
Regelmäßigkeit: Wintersemeste	er			
Inhalt:				
 Entwicklung und Programmierung eines einfachen zweidimensionalen barotropen Modells zur Prognose des Geopotentials der 500 hPa-Fläche mittels finiter Differenzen auf Basis der 2D-Vorticity-Gleichung sowie der Poisson-Gleichung für das Geopotential Mit Hilfe des entwickelten Programms: Simulation von Rossby-Wellen, Durchführung einer Vorhersage für den Nordatlantik 				
Grundlegende Literatur:	Grundlegende Literatur:			
Etling, D.: Theoretische Meteorologie, Springer				
Ferziger, J.H. und M. Peric: Computational Methods for Fluid Dynamics, Springer				
Roache, Computational Fluid Dynamics, Hermosa Publishers				
Empfohlene Vorkenntnisse:				
Angewandtes Programmieren				
Numerische Wettervorhersage				
Kinematik und Dynamik				
Modulzugehörigkeit:				
Wahlmodul Meteorologie				
Ausgewählte Themen mode	Ausgewählte Themen moderner Meteorologie A			
 Ausgewählte Themen mode 	Ausgewählte Themen moderner Meteorologie B			

- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Schadstoffausbreitung in der Atmosphäre				
SWS	Leistungspunkte:	Verantwortung		
2+1	4	Institut für Meteorologie und Klimatologie		
Regelmäßigkeit: W	intersemester			
Inhalt:				
 Wirkunger 	n von Luftbeimengungen auf die belebte	e und die unbelebte Natur.		
 Ausbreitur 	ng von Schadstoffen in der Atmosphäre	(Emission – Transmission – Immission).		
	3	ell, Euler-Modell, Lagrangsches Partikelmodell).		
	achung (Grenz- und Beurteilungswerte			
 Ausgewählte Probleme der Luftreinhaltung (Ozon, Smog, saurer Regen, Ausbreitung in Straßenschluchten) 				
Grundlegende Liter	ratur:			
Helbia et a	al., <i>Stadtklima und Luftreinhaltung.</i> Spri	inger Verlag Berlin		
	mosphärische Ausbreitungsmodellierun			
Empfohlene Vorke				
-	die Meteorologie			
Kinematik und	•			
• Turbulenz und	Diffusion			
Modulzugehörigke	t:			
Wahlmodul Me	eteorologie			
• Ausgewählte T	Ausgewählte Themen moderner Meteorologie A			
 Ausgewählte T 	Ausgewählte Themen moderner Meteorologie B			

- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Turbulenz II		
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie
D 1 20 1 2 W (

Regelmäßigkeit: Wintersemester

Inhalt:

- Turbulenzeigenschaften
- Ensemble gemittelte Gleichungen
- Räumlich gemittelte Gleichungen
- Turbulente Flüsse
- Erhaltungsgleichungen für Kovarianzen

Grundlegende Literatur:

* Wyngaard, Turbulence in the Atmosphere, Cambridge University Press

Empfohlene Vorkenntnisse:

- Kinematik und Dynamik
- Turbulenz und Diffusion

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Ausgewählte Themen moderner Meteorologie C

Bachelor und Master Physik

Atmosphärische Konvektion			
SWS	Leistungspunkte:	Verantwortung	
2+1	4	Institut für Meteorologie und Klimatologie	
Regelmäßigkeit: Wi	ntersemester	,	
Inhalt:			
molekulare Zahl		gh-Zahl, Konvektion zwischen Platten, It-Zahl, analytische Berechnung der kritischen Rayleigh-	
Aunosphan	SCHE KOHVEKHOH. GTEHZSCHICHTWACHS	tum, Entrainment, Strukturondung	
Grundlegende Litera	tur:		
	An Introduction to Boundary Layer Me rsical Fluid Dynamics, Oxford Universit	= · · · =	
Empfohlene Vorken	ntnisse:		
 Thermodynamik 	und Statik		
Kinematik und I	Dynamik		
• Turbulenz und [Diffusion		
Modulzugehörigkeit	:		
Wahlmodul Met	eorologie		
Ausgewählte Themen moderner Meteorologie A			
• Ausgewählte Th	Ausgewählte Themen moderner Meteorologie B		

Programmierpraktikum zur Simulation der atmosphärischen Grenzschicht SWS Leistungspunkte: Verantwortung			
2	4	Institut für Meteorologie und Klimatologie	
Regelmäßigkeit: S	Sommer- oder Wintersemester		
Inhalt:			
Differenz	3 3	nen eindimensionalen Grenzschichtmodells auf Basis finiter dtl-/Ekman-Schicht)	
Grundlegende Lite	eratur:		
Ferziger,	: Theoretische Meteorologie, Springer J.H. und M. Peric: Computational Meth Computational Fluid Dynamics, Hermos		
	enntnisse:		
Empfohlene Vork			
• Angewantes	Programmieren		
-	Programmieren d Dynamik		

Modulzugehörigkeit:

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A

Atmosphärische Grenzschicht und Konvektion

- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

SWS	Leistungspunkte:	Verantwortung
2+1	4	Institut für Meteorologie und Klimatologie
Regelmäßigkeit: Som	mersemester	
Inhalt:		
(Large-EddyNumerik vor Parallelisieru	Simulation, LES), Filterung, SGS-Mo LES-Modellen am Beispiel des LES-	Modells PALM: Grundgleichungen, numerische Verfahren,
	ur: Large Eddy Simulation turbulenter St arge Eddy Simulation for Incompress	
Empfohlene Vorkenn	tnisse:	
 Turbulenz und Di 	ffusion	
 Numerische Wet 	_	
•	Grenzschicht und Konvektion	
• Programmierprak	tikum zur numerischen Wettervorho	ersage
Modulzugehörigkeit:		
Wahlmodul Mete	-	
 /\ucapwahltalha 	men moderner Meteorologie A	

- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen			
SWS 2		Leistungspunkte: 4	Verantwortung Geschäftsführende Leitung des Instituts für Meteorologie und Klimatologie
Regelmäßigkeit: Blockveranstaltung zum Ende des Sommersemesters			
Inhalt: • • •	Simulation der turbuler	ılationen der konvektiven at ıten Umströmung eines Einz	mosphärischen Grenzschicht und Analyse der Daten elgebäudes uls zur Simulation von Konvektion über heterogen

Grundlegende Literatur:

- Ferziger, J.H. und M. Peric: Computational Methods for Fluid Dynamics, Springer
- Fröhlich, J.: Large Eddy Simulation turbulenter Strömungen, Springer
- Roache: Computational Fluid Dynamics, , Hermosa Publishers
- Sagault, P: Large Eddy Simulation for Incompressible Flows, Springer

Empfohlene Vorkenntnisse:

- Turbulenz und Diffusion
- Atmosphärische Grenzschicht und Konvektion
- Simulation turbulenter Strömungen mit LES-Modellen
- Programmierpraktikum zur numerischen Wettervorhersage

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Agrarmeteorologie		
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie

Regelmäßigkeit: Sommersemester

Inhalt:

- Strahlungs- und Wasserhaushalt von Pflanzen
- Globales Wasser- und Strahlungsangebot, Klimazonen
- Belaubungscharakteristik
- Wasser und Pflanze
- Bestimmung der Verdunstung und des Bodenwassergehaltes
- Bestandsklimate
- Phänologie
- Pflanzenschäden und deren Verhütung
- Das Klima in besonderen Räumen
- Bauernregel und Singularitäten
- Landwirtschaft und Klimaentwicklung

Grundlegende Literatur:

Vorlesungsskript

Empfohlene Vorkenntnisse:

• Einführung in die Meteorologie

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor Geographie
- Bachelor und Master Physik

Lokalklimate		
SWS 2+1	Leistungspunkte: 4	Verantwortung Institut für Meteorologie und Klimatologie

Regelmäßigkeit: Wintersemester

Inhalt:

- Das Klima der bodennahen Luftschicht
- Das Klima der Stadt
- Lokalklima Wald
- Lokalklima Wasser und Küste
- Das Klima in orographisch gegliedertem Gelände

Grundlegende Literatur:

Vorlesungsskript

Empfohlene Vorkenntnisse:

• Einführung in die Meteorologie

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor Geographie
- Bachelor und Master Physik

Fernerkundung I		
SWS 2+1	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie

Regelmäßigkeit: Wintersemester

Inhalt:

- Grundlagen für Messungen von Satelliten und deren Anwendung zur Erfassung von atmosphärischen Prozessen
- Fernerkundungsverfahren mit Satelliteninstrumenten. Ableitung von Temperatur, Wolken und Spurengasmessungen mit Fernerkundungsinstrumenten vom Satelliten und vom Boden.
- Ableitung von Strahlungsmessungen aus Satellitendaten

Grundlegende Literatur:

Kidder and Vonder Haar: Satellite Meteorology: An Introduction, Academic Press

Empfohlene Vorkenntnisse:

- Einführung in die Meteorologie
- Strahlung

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Master Studienfach optische Technologie
- Bachelor und Master Physik

Fernerkundung II		
SWS	Leistungspunkte:	Verantwortung
2+1	4	Institut für Meteorologie und Klimatologie

Regelmäßigkeit: Sommersemester

Inhalt:

- Der Beitrag bodengebundener und satellitengestützter Fernerkundungverfahren zu aktuellen Forschungsthemen zu Klima, Wetter und globaler Wandel.
- Darstellung der Methoden und deren Ergebnisse

Grundlegende Literatur:

Kidder and Von der Haar: Satellite Meteorology: An Introduction, Academic Press

Empfohlene Vorkenntnisse:

- Einführung in die Meteorologie
- Strahlung
- Fernerkundung I

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik

Seminar zur fortgeschrittenen Meteorologie			
SWS	Leistungspunkte:	Verantwortung	
2	5	Institut für Meteorologie und Klimatologie	
Regelmäßigkeit: Wintersemeste	er und Sommersemester	·	
Inhalt:			
Fortgeschrittene Themen der M	eteorologie		
0 11 1111			
Grundlegende Literatur:			
Wird in der Lehrveranstaltung b	ekannt gegeben.		
Empfohlene Vorkenntnisse:			
Wird in der Lehrveranstaltung bekannt gegeben.			
Modulzugehörigkeit:			
Ausgewählte Themen moderner Meteorologie C			

Meteorologische Exkursion II			
SWS	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie	
	2	institut für Meteorologie und Klimatologie	
Regelmäßigkeit: Sommersemes	ter oder Wintersemester		
Inhalt:			
Meteorlogischen Exkursion teiln dazu während der Exkursion vor schriftlichen Beitrag zu dem Exk	ehmen. Sie bereiten sich zu ein und stehen als Diskussions- ur ursionsbericht und tragen im A	er alljährlich und regelmäßig stattfindenden em thematischen Teilaspekt der Exkursion vor, tragen nd Ansprechpartner zur Verfügung, verfassen einen obschlussseminar darüber vor. Die inhaltlichen und ssen sich an der Qualifikation eines abgeschlossenen	
Grundlegende Literatur:			
Empfohlene Vorkenntnisse:			
Modulzugehörigkeit:			
 Ausgewählte Themen mode 	rner Meteorologie C		

Seminar Strahlung und Fernerkundung			
SWS 2	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie	
Regelmäßigkeit: Sommersemest	er und Wintersemester		
Inhalt: • verschiedene Forsc	chungsthemen in der Meteorolo	ogie bzgl. Strahlung und Fernerkundung	
Grundlegende Literatur: Wird in der Lehrveranstaltung a	angegeben		
Empfohlene Vorkenntnisse:			
Modulzugehörigkeit: • Masterstudiengang Meteoro	ologie		

Wofür braucht man Mathematik und Physik (im Meteorologie Studium)? WOMA SWS Leistungspunkte: O Verantwortung Institut für Meteorologie und Klimatologie

Regelmäßigkeit: Sommersemester und Wintersemester

Inhalt:

Anhand konkreter Beispiele aus den bei den empfohlenen Vorkenntnissen aufgelisteten Veranstaltungen wird studienbegleitend vermittelt für welche meteorologischen Fragestellungen und Anwendungen der Stoff aus Mathematik und Physik in den ersten zwei Semestern in der Meteorologie gebraucht wird

Grundlegende Literatur:

Wird in der Lehrveranstaltung angegeben

Empfohlene Vorkenntnisse:

- Vorlesung Einführung in die Meteorologie I
- Übung zu Einführung in die Meteorologie I
- Vorlesung Einführung in die Meteorologie II
- Übung zu Einführung in die Meteorologie II
- Lineare Algebra A und B
- Analysis A und B
- Mathematische Methoden der Physik
- Theoretische Elektrodynamik
- Experimentalphysik

- Bachelorstudiengang Physik
- Bachelorstudiengang Meteorologie

Externes Praktikum Inland			
SWS 2	Leistungspunkte:	Verantwortung Institut für Meteorologie und Klimatologie	
Regelmäßigkeit: Sommersemest	er oder Wintersemester		
Inhalt:			
	orologisch ausgerichtetes vierv	chen Einrichtung (Forschungseinrichtung, Behörde, vöchiges Praktikum. Nach erfolgreichem Abschluss des	
Grundlegende Literatur:			
Empfohlene Vorkenntnisse:			
Modulzugehörigkeit: • Ausgewählte Themen mode	rner Meteorologie C		

SWS	Leistungspunkte:	Verantwortung
3	6	Institut für Meteorologie und Klimatologie
Regelmäßigkeit: Sor	mmersemester oder Wintersemester	
Inhalt:		
Ingenieurbüro etc.) u		sländischen Einrichtung (Forschungseinrichtung, Behörde vierwöchiges Praktikum und bereiten sich dazu vor. Nach u einen Bericht.
	atur:	
. Grundlegende Litera Empfohlene Vorken		
. Grundlegende Litera Empfohlene Vorken Modulzugehörigkeit	ntnisse:	