Bachelorstudiengang Physik
Bachelorstudiengang Meteorologie

Masterstudiengang Physik
Masterstudiengang Technische Physik (auslaufend)
Masterstudiengang Meteorologie

Modulkatalog
Stand 12.10.2017

Fakultät für Mathematik und Physik
der Universität Hannover
Kontakt
Studiendekanat der Fakultät für Mathematik und Physik
Appelstr. 11 A
30167 Hannover
Tel.: 0511/ 762-4466
studiensekretariat@maphy.uni-hannover.de

Studiendekan
Prof. Dr. Eric Jeckelmann
Appelstr. 11 A
30167 Hannover
studiendekan@maphy.uni-hannover.de

Studiengangskoordination
Axel Köhler
Dr. Katrin Radatz
Appelstr. 11 A
30167 Hannover
Tel.: 0511/ 762-5450
sgk@maphy.uni-hannover.de
Vorbemerkung

Bitte beachten Sie, dass es sich hier um eine Zusammenstellung der Vorlesungen handelt, die regelmäßig angeboten werden. Insbesondere können weitere Vorlesungen im Vorlesungsverzeichnis den Wahlmodulen zugeordnet werden.

Der Modulkatalog sollte auch als Ergänzung zur Prüfungsordnung verstanden werden. Die aktuelle Version unserer Prüfungsordnung finden Sie jeweils unter:

Physik / Techn. Physik :

Meteorologie :
Inhalt

Studienverlaufspläne .. 8
 Studienverlaufplan BA Meteorologie ... 8
 Studienverlaufplan BA Physik ... 10

Bachelor Physik -- Kernmodule ... 12
 Analysis I + II ... 12
 Lineare Algebra I .. 13
 Mathematik für Physiker .. 14
 Mechanik und Relativität .. 15
 Elektrizität .. 16
 Optik, Atomphysik, Quantenphänomene ... 17
 Moleküle, Kerne, Teilchen, Festkörper ... 18
 Modulübergreifende Prüfung Experimentalphysik .. 19
 Mathematische Methoden der Physik / Theoretische Elektrodynamik .. 20
 Analytische Mechanik und Spezielle Relativitätstheorie ... 21
 Modulübergreifende Prüfung Theoretische Physik I .. 22
 Einführung in die Quantentheorie ... 23
 Statistische Physik .. 24
 Modulübergreifende Prüfung Theoretische Physik II .. 25
 Physik präsentieren .. 26

Bachelor Physik – Vertiefungsbereich ... 27
 Einführung in die Festkörperphysik .. 27
 Atom- und Molekülfysik .. 28
 Kohärente Optik .. 29
 Modulübergreifende Prüfung Vertiefungsbereich ... 30

Bachelor Physik -- Wahlbereich .. 31
 Moderne Aspekte der Physik .. 31
 Grundlagen der Lasermedizin und Biomedizinischen Optik .. 32
 Schlüsselkompetenzen .. 33

Bachelor Meteorologie – Kernmodule .. 34
 Lineare Algebra ... 34
 Analysis .. 35
 Angewandte Mathematik .. 36
 Angewandtes Programmieren ... 37
 Einführung in die Meteorologie ... 38
 Strahlung ... 39
 Wolkenphysik ... 40
 Instrumentenpraktikum .. 41
 Klimatologie ... 42
 Theoretische Meteorologie ... 43
 Synoptische Meteorologie .. 44
 Studium und Beruf ... 45
 Meteorologische Exkursion I ... 46

Bachelor Meteorologie – Wahlbereich .. 47
 Wahlmodul Meteorologie .. 47

Bachelor Meteorologie – Naturwissenschaftlich-technischer Wahlbereich 48
 Naturwissenschaftlich-technischer Wahlbereich ... 48
Modulkatalog B.Sc./M.Sc. Physik, Technische Physik, Meteorologie

Bachelor Meteorologie – Schlüsselkompetenzen .. 49
Schlüsselkompetenzen ... 49

Master Physik/Technische Physik – Fortgeschrittene Vertiefungsphase 50
Fortgeschrittene Festkörperphysik ... 50
Fortgeschrittene Gravitationsphysik .. 51
Quantenoptik .. 52
Quantenfeldtheorie .. 53
Elektronik und Messtechnik ... 54

Master Physik/Technische Physik – Schwerpunktsphase ... 55
Ausgewählte Themen moderner Physik A ... 55
Ausgewählte Themen moderner Physik B ... 56
Ausgewählte Themen der Photonik .. 57
Ausgewählte Themen der Nanoelektronik ... 58
Seminar ... 59
Schlüsselkompetenzen ... 60
Industriepraktikum .. 61

Master Meteorologie – Fortgeschrittene Meteorologie ... 62
Seminare zur Fortgeschrittene Meteorologie .. 62
Fortgeschrittenenpraktikum .. 63
Schlüsselkompetenzen ... 64

Master Meteorologie – Wahlbereich .. 65
Ausgewählte Themen moderner Meteorologie A .. 65
Ausgewählte Themen moderner Meteorologie B .. 66
Ausgewählte Themen moderner Meteorologie C .. 67

Abschlussarbeiten und Forschungsphase ... 68
Bachelorprojekt .. 68
Forschungspraktikum ... 69
Projektplanung .. 70
Modulübergreifende Prüfung Forschungspraktikum/Projektplanung 71
Masterarbeit .. 72

Lehrveranstaltungskatalog ... 73
Tabelle Zuordnung der Lehrveranstaltungen ... 75
Fortgeschrittene Quantentheorie ... 80
Seminar zu Fortgeschrittene Quantentheorie .. 81
Einführung in die elektronische Messdatenerfassung und -verarbeitung mit LabView 82
Computerphysik .. 83
Theoretische Festkörperphysik ... 84
Statistische Feldtheorie ... 85
Seminar zur Theorie der kondensierten Materie ... 86
Fortgeschrittene Computerphysik ... 87
Aktuelle Probleme der Theorie der kondensierten Materie 88
Theorie der fundamentalen Wechselwirkungen ... 89
Seminar zu Theorie der fundamentalen Wechselwirkungen 90
Ergänzungen zur klassischen Physik .. 91
Einführung in die Teilchenphysik ... 92
Festkörperphysik in niedrigen Dimensionen ... 93
Oberflächenphysik ... 94
Vom Atom zum Festkörper ... 95

Leibniz Universität Hannover
Seminar zu Vom Atom zum Festkörper .. 96
Halbleiterphysik .. 97
Halbleitersensortechnik in der Photovoltaik ... 98
Rastersondentechnik .. 99
Molekulare Elektronik .. 100
Methoden der Oberflächenanalytik ... 101
Laborpraktikum Methoden der Oberflächenanalytik 102
Physik der Nanostrukturen ... 103
Optische Spektroskopie von Festkörpern ... 104
Quantenstrukturbaulemente .. 105
Physik der Solarzelle .. 106
Vorlesung „Einführung in die elektronische Messdatenerfassung und -verarbeitung mit LabView“ mit Praxisanteil .. 107
Laborpraktikum Festkörperphysik .. 108
Seminar Aktuelle Forschungsthemen der Festkörperphysik 109
Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern 110
Physik in Nanostrukturen .. 111
Nichtlineare Optik .. 112
Photonik .. 113
Seminar zu Photonik .. 114
Atomoptik .. 115
Laborpraktikum Optik .. 116
Festkörperlaser .. 117
Optische Schichten ... 118
Data Analysis ... 119
Neutron Stars and Black Holes .. 120
Seminar Gravitationswellen ... 121
Seminar Gravitationsphysik ... 122
Laserinterferometrie .. 123
Laborpraktikum Laserinterferometrie ... 124
Laserstabilisierung und Kontrolle optischer Experimente 125
Laborpraktikum Cluster Computing .. 126
Nichtklassisches Licht .. 127
Nichtklassische Laserinterferometrie .. 128
Elektronische Metrologie im Optiklabor ... 129
Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie ... 130
Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs ... 131
Radioaktivität in der Umwelt und Strahlengefährdung des Menschen 132
Strahlenschutz und Radioökologie ... 133
Nukleare Analysemethoden in der Radioanalytik 134
Kernphysikalische Anwendungen in der Umweltphysik 135
Radiochemie & Radioanalytik ... 136
Einführung in die Massenspektrometrie .. 137
Seminar/Praktikum Strahlenschutz und Radioökologie 138
Fachkunde im Strahlenschutz ... 139
 Numerische Wettervorhersage ... 140
Programmierpraktikum zur Numerischen Wettervorhersage 141
Schadstoffausbreitung in der Atmosphäre ... 142
Turbulenz II.......................... 143
Atmosphärische Konvektion........... 144
Programmierpraktikum zur Simulation der atmosphärischen Grenzschicht............. 145
Simulation turbulenter Strömungen mit LES-Modellen................................. 146
Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen.... 147
Agrarmeteorologie........................ 148
Lokalklima 149
Fernerkundung I.......................... 150
Fernerkundung II.......................... 151
Seminar zur fortgeschrittenen Meteorologie.. 152
Meteorologische Exkursion II............. 153
Externes Praktikum Inland 154
Externes Praktikum Ausland 155
Studienverlaufsplan BA Meteorologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Lineare Algebra A</td>
<td></td>
<td></td>
<td>Numerik A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 LP, SL, PL</td>
<td></td>
<td></td>
<td>4 LP, SL, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lineare Algebra B</td>
<td></td>
<td></td>
<td>Stochastik A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 LP, SL, PL</td>
<td></td>
<td></td>
<td>4 LP, SL, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bessere Klausur bestimmt Gesamtnote</td>
<td></td>
<td></td>
<td>Angewandtes Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 LP, SL, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 LP, SL, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bessere Klausur bestimmt Gesamtnote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematischen Methoden der Physik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 LP, SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL: eine der Klausuren must bestanden werden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Physik</td>
<td>Mechanik</td>
<td>Elektrizität</td>
<td>Optik, Atomphysik, Quantenphänomen</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>und Relativität</td>
<td>12 LP, SL</td>
<td></td>
<td>10 LP, SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 LP, SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physik</td>
<td>Mathematische Methoden der Physik</td>
<td>Theoretische Elektrodynamik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>7 LP, SL</td>
<td>7 LP, SL</td>
<td>7 LP, SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL: eine der Klausuren must bestanden werden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physik</td>
<td>Einführung in die Meteorologie I</td>
<td>Einführung in die Meteorologie II</td>
<td>Strahlung I</td>
<td>Strahlung II</td>
<td>Instrumentenpraktikum</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>4 LP, SL, PL</td>
<td>6 LP, SL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL: eine der Klausuren must bestanden werden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physik</td>
<td>Thermodynamik und Statik</td>
<td>Thermodynamik und</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>4 LP, SL, PL</td>
<td>Kinematik und Dynamik</td>
<td>4 LP, SL, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulenz und Diffusion</td>
<td></td>
<td>4 LP, SL, PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulkatalog B.Sc./ M.Sc. Physik, Technische Physik, Meteorologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studium und Beruf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einführung in das Studium der Meteorologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berufskundliches Praktikum SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertiefungsstudium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteorologische Exkursion I 2 LP, SL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahlmodul Meteorologie Auswahl aus entsprechend zugeordneten Lehrveranstaltungen im Umfang von mind. 20 LP 20 LP, (SL), PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naturwissenschaftlich – technischer Wahlbereich mind. 12 LP aus Lehrveranstaltungen der in der Prüfungsordnung genannten Fakultäten 12 LP, (SL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eine Lehrveranstaltung aus dem Angebot des Fachsprachenzentrums oder Zentrum für Schlüsselkompetenzen oder entsprechend ausgewiesene Angebote der Fakultät. 2 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wissenschaftliches Schreiben 2 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsentation und Projektarbeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelorprojekt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28/4 32/4 30/5 Je nach individueller Planung.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leibniz Universität Hannover
Studienverlaufsplan BA Physik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik</td>
<td>Analysis I</td>
<td>Analysis II</td>
<td>Mathematik</td>
<td>Mathematik</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 LP, SL,</td>
<td>10 LP, SL,</td>
<td>für Physiker I</td>
<td>für Physiker II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td>PL</td>
<td>4 LP, SL</td>
<td>4 LP, SL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Es muss nur eine Klausur bestanden werden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lineare</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algebra I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 LP, SL,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Physik</td>
<td>Mechanik und Relativität</td>
<td>Elektrizität</td>
<td>Optik, Atomphysik, Quantenphänomene</td>
<td>Moleküle, Kerne, Teilchen, Festkörper</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 LP, SL</td>
<td>12 LP, SL</td>
<td>10 LP, SL</td>
<td>10 LP, SL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretische Physik</td>
<td>Mathematische Methoden der Physik</td>
<td>Theoretische Elektrodynamik</td>
<td>Analytische Mechanik und Spezielle Relativitätstheorie</td>
<td>Einführung in die Quantentheorie</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 LP, SL,</td>
<td>7 LP, SL</td>
<td>8 LP, SL</td>
<td>8 LP, SL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertiefungsstudium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 von 3 Vertiefungsmodulen je V3+U1+P3 je 8 LP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Festkörperphysik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Atom- und Molekülphysik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>– Kohärente Optik</td>
<td></td>
</tr>
<tr>
<td>Physikalische Wahlbereiche</td>
<td></td>
<td></td>
<td></td>
<td>Mind. 12 LP aus dem Lehrangebot der Physik</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlüsselkompetenzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 LP</td>
<td></td>
</tr>
<tr>
<td>Wahlpflichten</td>
<td>Seminar oder Vorlesung</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betriebswirtschaftslehre, Chemie, Elektrotechnik, Geodäsie und Geoinformatik, Informatik, Maschinenbau, Mathematik, Meteorologie, Philosophie und Volkswirtschaftslehre.</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Präsentation und Projektarbeit</td>
<td>Physikpräsentieren Seminar 3 LP, SL</td>
<td>Bachelorarbeit 12 LP</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------------</td>
<td>----------------------</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vortrag 3 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte/Prüfungsleistungen</td>
<td>33/2</td>
<td>29/1</td>
<td>Je nach individueller Planung unterschiedlich.</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bachelor Physik -- Kernmodule

<table>
<thead>
<tr>
<th>Analysis I + II</th>
<th>0211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Analysis und Institut für Differentialgeometrie</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Analysis I
| | Übung zu Analysis I
| | Vorlesung Analysis II
| | Übung zu Analysis II |
| Leistungsnachweis zum Erwerb der LP | Studienleistung:
| | jeweils die Übung zu Analysis I und zu Analysis II
| | Prüfungsleistung:
| | eine der Klausuren zu Analysis I oder zu Analysis II |
| Notenzusammensetzung | geht nicht in die Bachelornote ein |
| Leistungspunkte (ECTS) | 20
| Präsenzstudium (h): | 180
| Selbststudium (h): | 420 |

Kompetenzziele:

Inhalte:

Analysis I:
- Zahlbereiche, systematische Einführung reeller Zahlen;
- Folgen und Reihen;
- Konvergenz und Stetigkeit;
- Differentialrechnung für Funktionen in einer Variablen;
- Integralrechnung für Funktionen in einer Variablen.

Analysis II:
- Topologische Grundbegriffe wie metrische und normierte Räume, Konvergenz, Stetigkeit, Vollständigkeit, Kompaktheit;
- Differentiation von Funktionen in mehreren Variablen, totale und partielle Differenzierbarkeit, Satz über Umkehrfunktionen und implizite Funktionen, lokale Extrema mit und ohne Nebenbedingungen; Vektorfelder und Potentiale;
- gewöhnliche Differentialgleichungen, Existenz, Eindeutigkeit, elementare Lösungsmethoden.

Grundlegende Literatur:
- H. Amann & J. Escher: *Analysis II*, Birkhäuser Verlag, 1999

Empfohlene Vorkenntnisse:
Schulkenntnisse in Mathematik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
Lineare Algebra I

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Lineare Algebra I, Übung zu Lineare Algebra I</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungsaufgaben, Prüfungsleistung: Klausur</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>geht nicht in die Bachelornote ein</td>
</tr>
</tbody>
</table>

| Leistungspunkte (ECTS): 10 | Präsenzstudium (h): 90 | Selbststudium (h): 210 |

Kompetenzziele:

Inhalte:
- Grundlegende Eigenschaften von Vektorräumen (Basis und Dimension);
- lineare Abbildungen und Matrizen;
- Determinanten;
- lineare Gleichungssysteme mit Lösungsverfahren (Gauß-Algorithmus);
- Eigenwerte und Eigenvektoren;
- Diagonalisierung.

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
Schulkenntnisse in Mathematik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
Mathematik für Physiker

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Analysis und Institut für Differentialgeometrie</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Mathematik für Physiker I
Übung zu Mathematik für Physiker I
Vorlesung Mathematik für Physiker II
Übung zu Mathematik für Physiker II |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben zu beiden Übungen
Prüfungsleistung: Mündliche Prüfung zur Mathematikausbildung der ersten 4 Semester (Analysis I+II, Lineare Algebra und Mathematik für Physiker) |
| Notenzusammensetzung | Note der mündlichen Prüfung |
| Leistungspunkte (ECTS): | Gewicht:
| Präsenzstudium (h): | 90
Selbststudium (h): | 150 |

Kompetenzziele:

Inhalte:
- Lebesguessche Funktionenräume und Konvergenzsätze
- Differentialformen und Integralsätze
- Fourieranalyse
- Lineare partielle Differentialgleichungen
- Elemente der Funktionentheorie

Grundlegende Literatur:
wird in der Vorlesung angegeben

Empfohlene Vorkenntnisse:
Modul Analysis I + II

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich-technischer Wahlbereich)
Mechanik und Relativität

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Experimentalphysik</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Mechanik und Relativität
| | Übung zu Mechanik und Relativität |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben |
| Notenzusammensetzung | |
| Leistungspunkte (ECTS): | 6 |
| Präsenzstudium (h): | 90 |
| Selbststudium (h): | 90 |

Kompetenzziele:

Inhalte:
- Mechanik eines Massepunktes, Systeme von Massepunkten und Stöße
- Dynamik starrer ausgedehnter Körper
- Reale und flüssige Körper, Strömende Flüssigkeiten und Gase
- Temperatur, Ideales Gas, Wärmetransport
- Mechanische Schwingungen und Wellen

Grundlegende Literatur:
- Demtröder, *Experimentalphysik 1, Mechanik und Wärme*, Springer Verlag
- Gerthsen, *Physik*, Springer Verlag
- Tipler, *Physik*, Spektrum Akademischer Verlag
- Feynman, *Lectures on Physics*, Band 1; Addison-Wesley Verlag

Empfohlene Vorkenntnisse:
Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)
<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Experimentalphysik</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Elektrizität
| | Übung zu Elektrizität
| | Grundpraktikum I: Mechanik und Elektrizität |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben und Laborübungen |
| Notenzusammensetzung | - |
| Leistungspunkte (ECTS): | 12 Präsenzstudium (h): 150 Selbststudium (h): 210 |

Kompetenzziele:

Die Studierenden sind mit den Grundprinzipien des Experimentierens vertraut. Sie kennen die Funktion und Genauigkeit verschiedener Messgeräte und sind mit computergestützter Datenerfassung vertraut. Sie sind in der Lage Messergebnisse in tabellarischer und graphischer Form übersichtlich darzustellen.

Inhalte:

Vorlesung und Übung:
- Elektrostatik, Elektrischer Strom, Statische Magnetfelder
- Zeitlich veränderliche Felder
- Maxwellische Gleichungen
- Elektromagnetische Wellen

Grundpraktikum I: Mechanik und Elektrizität
Praktikumsexperimente: Auswahl aus: Schwingungen, Gekoppelte Pendel, Kreisel, Ultraschall, Akustik, Maxwellrad, Temperatur, Viskosität, Spezifische Wärme, Wasserdämpfe, Widerstand, Schwingkreise, Transistor, Operationsverstärker, Kippschaltung, Rückkopplung, Membranmodell, Galvanometer, Leuchtstofflampe, Oszilloskop, Magnetfeld, Brennstoffzelle

Grundlegende Literatur:
- Demtröder, *Experimentalphysik 2, Elektrizität und Optik*, Springer Verlag
- Gerthsen, *Physik*, Springer Verlag
- Tipler, *Physik*, Spektrum Akademischer Verlag
- Feynman, *Lectures on Physics*, Band 2; Addison-Wesley Verlag

Empfohlene Vorkenntnisse:
Vorlesungen Mechanik und Relativität und Mathematische Methoden der Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)
Optik, Atomphysik, Quantenphänomene

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>1013</th>
</tr>
</thead>
</table>

Semesterlage
Wintersemester

Modulverantwortliche(r)
Institute der Experimentalphysik

Lehrveranstaltungen (SWS)
- Vorlesung Optik, Atomphysik, Quantenphänomene
- Übung zu Optik, Atomphysik, Quantenphänomene
- Grundpraktikum II: Optik und Atomphysik

Leistungsnachweis zum Erwerb der LP
Studienleistung: Übungsaufgaben und Laborübungen

Notenzusammensetzung
- Leistungsnachweis zum Erwerb der LP: Übungsaufgaben und Laborübungen

Leistungspunkte (ECTS):
- 10

Präsenzstudium (h):
120

Selbststudium (h):
180

Kompetenzziele:

Inhalte:
- Optik, Atomphysik, Quantenphänomene
 - Geometrische Optik
 - Welleneigenschaften des Lichts: Interferenz, Beugung, Polarisation, Doppelbrechung
 - Optik, optische Instrumente
 - Materiewellen, Welle-Teilchen-Dualismus
 - Aufbau von Atomen
 - Energiezustände, Drehimpuls, magnetisches Moment
 - Mehrelektronensysteme, Pauli-Prinzip
 - Spektroskopie, spontane und stimulierte Emission

- Grundpraktikum II: Optik und Atomphysik
 - mögliche Praktikumsexperimente: Linsen, Interferometer, Beugung, Mikroskop, Prisma, Gitter, Fotoeffekt, Spektralapparat, Polarisation

Grundlegende Literatur:
- Demtröder *Experimentalphysik 2 und 3*, Springer Verlag
- Berkeley Physik kurs
- Bergmann/Schäfer
- Haken, Wolf, *Atom- und Quantenphysik*, Springer Verlag

Empfohlene Vorkenntnisse:
Module Mechanik und Relativität und Elektrizität

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
keine
Moleküle, Kerne, Teilchen, Festkörper

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Experimentalphysik</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Moleküle, Kerne, Teilchen, Festkörper
Übung zu Moleküle, Kerne, Teilchen, Festkörper
Grundpraktikum III: Thermodynamik |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben und Laborübungen |
| Notenzusammensetzung | - |
| Leistungspunkte (ECTS): | 10 |
| Präsenzstudium (h): | 120 |
| Selbststudium (h): | 180 |

Kompetenzziele:
Die Studierenden kennen die fundamentalen experimentellen Befunde und Gesetzmäßigkeiten der Struktur der Materie von Elementarteilchen bis zur Festkörperphysik. Sie verstehen die Bezüge zu den grundlegenden Gesetzmäßigkeiten der Mechanik, Elektrodynamik und Quantenmechanik.
Die Studierenden sind in der Lage diese Gesetzmäßigkeiten eigenständig auf physikalische Problemstellungen anzuwenden.
Die Studierenden beherrschen die Bedienung der üblichen Messgeräte. Sie sind in der Lage Messergebnisse sauber und vollständig zu protokollieren und diese kritisch zu hinterfragen.

Inhalte:
- **Moleküle, Kerne, Teilchen, Festkörper**
 - Moleküle: Chemische Bindung, Molekülspektroskopie
 - Aufbau der Materie
 - Kerne und Elementarteilchen
 - Radioaktivität und kernphysikalische Messmethoden
 - Grundlagen der Wärmestatistik
 - Hauptsätze der Thermodynamik

- **Grundpraktikum III: Thermodynamik**
 - mögliche Praktikumsexperimente: Temperaturstrahlung, Stirlingmotor, Kritischer Punkt

Grundlegende Literatur:
- Demtröder *Experimentalphysik 2 und 3*, Springer Verlag
- Berkeley Physikkurs
- Bergmann/Schäfer
- Haken, Wolf, *Atom- und Quantenphysik sowie Molekülphysik und Quantenchemie*, Springer Verlag

Empfohlene Vorkenntnisse:
Module Mechanik und Relativität, Elektrizität, und Optik, Atomphysik, Quantenphänomene

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich-technischer Wahlbereich)
Modulübergreifende Prüfung Experimentalphysik

<table>
<thead>
<tr>
<th>Modulübergreifende Prüfung Experimentalphysik</th>
<th>1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Experimentalphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>mündliche Prüfung</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>2 (Physik) 28 (Meteorologie)</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:

Physik:
- Mechanik und Relativität
- Elektrizität
- Optik, Atomphysik und Quantenphänomene
- Moleküle, Kerne, Teilchen und Festkörper

Meteorologie:
- Mechanik und Relativität
- Elektrizität
- Optik, Atomphysik und Quantenphänomene

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Physik:
Drei der Module Mechanik und Relativität, Elektrizität, Optik, Atomphysik und Quantenphänomene und Moleküle, Kerne, Teilchen und Festkörper

Meteorologie:
Zwei der Module Mechanik und Relativität, Elektrizität und Optik, Atomphysik und Quantenphänomene.

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)
Mathematische Methoden der Physik/ Theoretische Elektrodynamik

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Mathematische Methoden der Physik
Übung zu Mathematische Methoden der Physik
Vorlesung Theoretische Elektrodynamik
Übung zu Theoretische Elektrodynamik |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: jeweils die Übung zu Mathematische Methoden der Physik und zu Theoretische Elektrodynamik
Prüfungsleistung: eine der Klausuren zu Mathematische Methoden der Physik und zu Theoretische Elektrodynamik |
| Notenzusammensetzung | geht nicht in die Bachelornote ein |
| Leistungspunkte (ECTS): | 14 |
| Präsenzstudium (h): | 150 |
| Selbststudium (h): | 270 |

Kompetenzziele:

Die Studierenden kennen die mathematischen Größen zur Beschreibung physikalischer Theorien. Sie sind in der Lage einfache physikalische Problemstellungen mathematisch zu formulieren und zu lösen.

Inhalte:

Mathematische Methoden der Physik:
- beschleunigte Koordinatensysteme: Scheinkräfte, Kinematik des starren Körpers
- Vektoren: Skalar- und Kreuzprodukt, Index-Schreibweise, Determinanten
- Raumkurven: Differenzieren, Kettenregel, Gradient, Frenet-Formeln
- gewöhnliche Differentialgleichungen: Lösungsverfahren
- Newtonsche Mechanik eines Massenpunkts, Systeme von Massenpunkten
- Tensoren: Matrizen, Drehungen, Hauptidegmentruck, Trägheitstensor
- harmonische Schwingungen: Normalkoordinaten, Resonanz
- Funktionen: Umkehrfunktion, Potenzreihen, Taylorreihe, komplexe Zahlen
- Integration: ein- und mehrdimensional, Kurven- und Oberflächenintegrale
- eindimensionale Bewegung: Lösung mit Energiesatz
- krummlinige Koordinaten: Integrationsmaß, Substitution, Delta-Distribution

Theoretische Elektrodynamik:
- Vektorfelder: Vektoranalysis, Integralsätze, Laplace-Operator
- Maxwell-Gleichungen: integrale Form, Anfangs- und Randwerte, Grenzflächen
- Potentiale, Eichfreiheit, Vakuum-Lösung, Lösung mit Quellen, Retardierung
- lineare partielle Differentialgleichungen: Separation, Greensche Funktion
- Fourier-Analysis: Funktionenräume, Fourier-Reihen, Fourier-Transformation
- Elektrostatik: Randwertprobleme, Potentialtheorie, Multipol-Entwicklung
- Magnetostatik: fadenförmige Stromverteilungen, Feldenergie
- bewegte Punktladungen, Lienard-Wiechert-Potentiale
- elektromagnetische Wellen: im Vakuum, Einfluß der Quellen, Abstrahlung

Grundlegende Literatur:
- Feynman, *Lectures on Physics*, Band 1+2, Addison-Wesley Verlag
- Römer & Forger, *Elementare Feldtheorie*, Wiley

Empfohlene Vorkenntnisse:
- Schulkenntnisse in Mathematik und Physik (gymnasiale Oberstufe)
- ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Kernmodul)
<table>
<thead>
<tr>
<th>Analytische Mechanik und Spezielle Relativitätstheorie</th>
<th>1112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Theoretische Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Analytische Mechanik und Spezielle Relativitätstheorie, Übung zu Analytische Mechanik und Spezielle Relativitätstheorie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungsaufgaben</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>8</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>90</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>150</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Lagrange-Mechanik: Zwangsbedingungen, Multiplikatoren, Lorentz-Kraft
- Variationsrechnung: Funktionalableitung, Extrema mit Nebenbedingungen
- Wirkungsprinzip, Noether-Theorem, Erhaltungssätze
- Dynamik des starren Körpers: Euler-Gleichungen, Kreisel, Präzession, Nutation
- Hamiltonsche Mechanik: Legendre-Transformation, kanonische Gl., Erhaltungssätze
- kanonische Transformationen: Phasenportrait, symplektische Struktur, Invarianten
- kovariante Formulierung von Maxwell & Lorentz, Lagrangedichte, Erhaltungssätze
- spezielle Relativität: Kinematik, Dynamik von Massenpunkten, Vierer-Notation

Grundlegende Literatur:
- Honerkamp & Römer, *Klassische Theoretische Physik*, Springer
- Landau-Lifschitz, *Lehrbuch der Theoretischen Physik, Band I, Harri*
- H. Goldstein, Poole & Safko, *Classical Mechanics*, Wiley-VCH Verlag GmbH & Co
- Arnold, *Classical Mechanics*, Springer

Empfohlene Vorkenntnisse:
- Mathematische Methoden der Physik/ Theoretische Elektrodynamik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)
<table>
<thead>
<tr>
<th>Modulübergreifende Prüfung Theoretische Physik I</th>
<th>1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Theoretische Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>mündliche Prüfung</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>1</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>-</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>-</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Rechenmethoden der Physik
- Theoretische Elektrodynamik
- Analytische Mechanik und spezielle Relativitätstheorie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
Eines der Module Mathematische Methoden/ Theoretische Elektrodynamik oder Analytische Mechanik und Spezielle Relativitätstheorie

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
Einführung in die Quantentheorie

<table>
<thead>
<tr>
<th>Modulkatalog B.Sc./ M.Sc. Physik, Technische Physik, Meteorologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Photonen als einfache Quantensysteme, Bewegung von Teilchen, Schrödingergleichung
- Hamilton-Formalismus: Postulate, Transformationen, Zeitentwicklungsbilder
- Einfache Systeme: Oszillator, Potentialschwelle, Potentialtopf, periodisches Potential
- Drehimpuls: Symmetrien, Drehimpulsalgebra, Darstellungen, Addition von Drehimpulsen, Spin
- Zentralpotential: Separation der Schrödinger-Gleichung, Coulomb-Potential
- Näherungsverfahren: zeitunabhängige und zeitabhängige Störungstheorie, Variationsverfahren, Semiklassik, Anwendungen
- Mehreichensysteme: identische Teilchen, Fock-Raum, Hartree-Fock, Moleküle, Quantenfeld

Grundlegende Literatur:
- F. Schwabl, *Quantenmechanik*, Springer
- Peres, *Quantum Theory: Concepts and Methods*, Springer

Empfohlene Vorkenntnisse:
Mathematische Methoden/ Theoretische Elektrodynamik, Analytische Mechanik und Spezielle Relativitätstheorie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)
<table>
<thead>
<tr>
<th>Statistische Physik</th>
<th>1114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Theoretische Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Statistische Physik, Übung zu Statistischer Physik</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungsaufgaben</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Präsenzstudium (h):</td>
</tr>
<tr>
<td></td>
<td>Selbststudium (h):</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden beherrschen die mathematische Beschreibung der Hauptsätze. Sie sind in der Lage die Konzepte der Statistischen Physik auf die Gebiete der klassischen Physik wie auch der Quantentheorie anzuwenden. Sie kennen prominente Beispiele und können diverse mathematisch behandeln.

Inhalte:
- Grundlegende Konzepte in der statistischen Mechanik: Wahrscheinlichkeitstheorie, statistische Ensembles, Elektrodynamik in Medien, Zustandssumme, Dichtematix, Entropie
- Ideale Gase: mehratomige Gase, Fermi-Gas, Bose-Gas, nichtwechselwirkende Spins, Quasiteilchen
- Phänomenologische Theorie (Thermodynamik): Hauptsätze der Thermodynamik, Wärmemaschinen, irreversible Prozesse, thermodynamische Potentiale und Relationen
- Wechselwirkende Systeme: Molekularfeldtheorie, Monte-Carlo Simulationen, Ising Modell, Perkolation, reale Gase, Phasenübergänge
- Nichtgleichgewichts-Statistik: Fluktuationen, Brownsche Bewegung, kinetische Gleichungen, Transport

Grundlegende Literatur:
- C. Kittel, H. Krömer, *Thermodynamik*, Oldenbourg
- F. Schwabl, *Statistische Physik*, Springer

Empfohlene Vorkenntnisse:
Analytische Mechanik und Spezielle Relativitätstheorie, Einführung in die Quantentheorie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich-technischer Wahlbereich)
<table>
<thead>
<tr>
<th>Modulübergreifende Prüfung Theoretische Physik II</th>
<th>1102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Theoretische Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>mündliche Prüfung</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Gewicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Einführung in die Quantentheorie
- Statistische Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
Eines der Module Einführung in die Quantentheorie oder Statistische Physik sowie die Modulübergreifende Prüfung Theoretische Physik I

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
Physik präsentieren

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Winter- und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Proseminar</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Seminarleistung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>3</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>30</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>60</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- physikalische Themen (Auswahl aus einem vom Dozenten vorgegeben Themenfeld)
- Vorbereitung einer Präsentation
- Erfolgsfaktoren einer verständlichen Präsentation
- Visualisierungsmedien wirksam einsetzen
- Umgang mit Lampenfieber
- Wissenschaftliche Diskussion

Grundlegende Literatur:
Wird zum jeweiligen Thema benannt

Empfohlene Vorkenntnisse:
- In Absprache mit den Dozenten

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Kernmodul)
Bachelor Physik – Vertiefungsbereich

Einführung in die Festkörperphysik

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Festkörperphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Einführung in die Festkörperphysik, Übung zu Einführung in die Festkörperphysik, Praktikum zur Einführung in die Festkörperphysik</td>
</tr>
</tbody>
</table>

Leistungsnachweis zum Erwerb der LP

| Notenzusammensetzung | Studienleistung: Übungen und Laborübung |

Leistungspunkte (ECTS)

| Präsenzstudium (h): | 105 |
| Selbststudium (h): | 135 |

Kompetenzziele:

Die Studierenden verstehen die grundlegenden Konzepte der Festkörperphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Kristalle und Kristallstrukturen
- reziprokes Gitter
- Kristallbindung
- Gitterschwingungen, thermische Eigenschaften, Quantisierung, Zustandsdichte
- Fermigas
- Energiebänder
- Halbleiter, Metalle, Fermiflächen
- Anregungen in Festkörpern
- experimentelle Methoden: Röntgenbeugung, Rastersonden- und Elektronenmikroskopie, Leitfähigkeit, Magnetowiderstand, Halleffekt, Quantenhalleffekt

Grundlegende Literatur:

- Ashcroft and Mermin, *Solid State Physics*, Oldenbourg
- C. Kittel, *Einführung in die Festkörperphysik*, Oldenbourg
- K. Kopitzki, *Einführung in die Festkörperphysik*, Vieweg+Teubner

Empfohlene Vorkenntnisse:

- Module Mechanik und Relativität, Elektrizität, Optik, Atomphysik, Quantenphänomene und Moleküle, Kerne, Teilchen, Festkörper

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

- Modulübergreifende Prüfung Experimentalphysik

Verwendbarkeit:

- Bachelorstudiengang Physik (Vertiefungsmodul)
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)
<table>
<thead>
<tr>
<th>Modulkatalog B.Sc./ M.Sc. Physik, Technische Physik, Meteorologie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>Institut für Quantenoptik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen (SWS)</th>
<th>Vorlesung Atom- und Molekülphysik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Übung Atom- und Molekülphysik</td>
</tr>
<tr>
<td></td>
<td>Praktikum Laborpraktikum Atom- und Molekülphysik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis zum Erwerb der LP</th>
<th>Studienleistung: Übungen und Laborübung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notenzusammensetzung</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte (ECTS):</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium (h):</td>
<td>105</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden verstehen die grundlegenden Konzepte der Atom- und Molekülphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Zusammenfassung H-Atom</td>
</tr>
<tr>
<td>• Atome in statischen elektrischen und magnetischen Feldern</td>
</tr>
<tr>
<td>• Fein-/Hyperfeinstrukturen atomarer Zustände</td>
</tr>
<tr>
<td>• Wechselwirkung mit dem EM Strahlungsfeld</td>
</tr>
<tr>
<td>• Mehrelektronensysteme</td>
</tr>
<tr>
<td>• Atomspektren/Spetroskopie</td>
</tr>
<tr>
<td>• Vibration und Rotation von Molekülen</td>
</tr>
<tr>
<td>• Elektronische Struktur von Molekülen</td>
</tr>
<tr>
<td>• Dissoziation und Ionisation von Molekülen</td>
</tr>
<tr>
<td>• Ausgewählte Experimente der modernen Atom- und Molekülphysik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundlegende Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Haken, H. Wolf, Atom- und Quantenphysik sowie Molekülphysik und Quantenchemie, Springer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Module Mechanik und Relativität, Elektrizität, Optik, Atomphysik, Quantenphänomene und Moleküle, Kerne, Teilchen, Festkörper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulübergreifende Prüfung Experimentalphysik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bachelorstudiengang Physik (Vertiefungsmodul)</td>
</tr>
<tr>
<td>• Bachelorstudiengang Meteorologie (Naturwissenschaftlich- technischer Wahlbereich)</td>
</tr>
<tr>
<td>Kohärente Optik</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Semesterlage</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden verstehen die grundlegenden Konzepte der Kohärenten Optik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:
- Maxwellgleichungen und EM Wellen
- Wellenoptik, Matrixoptik (ABCD, Jones, Müller, Streu, Transfer...)
- Beugungstheorie, Fourieroptik
- Resonatoren, Moden
- Licht-Materie-Wechselwirkung (klassisch / halbklassisch, Bloch-Modell)
- Ratenungleichungen, Laserdynamik
- Lasertypen, Laserkomponenten, Laseranwendungen
- Modengekoppelte Laser
- Einmodenlaser
- Laserrauschen/-stabilisierung
- Laserinterferometrie
- Modulationsfelder und Homodyndetektion

Grundlegende Literatur:
- Meschede, Optik, Licht und Laser, Teubner Verlag
- Menzel, Photonik, Springer
- Born/Wolf, Principles of Optics, Pergamon Press
- Kneubühl/Sigrist, Laser, Teubner
- Reider, Photonik, Springer
- Yariv, Hecht, Siegmann
- Originalliteratur

Empfohlene Vorkenntnisse:
- Module Mechanik und Relativität, Elektrizität, Optik, Atomphysik, Quantenphänomene und Moleküle, Kerne, Teilchen, Festkörper

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Vertiefungsmodul)
<table>
<thead>
<tr>
<th>Modulübergreifende Prüfung Vertiefungsbereich</th>
<th>1002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Experimentalphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>mündliche Prüfung</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Gewicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden verstehen die grundlegenden Konzepte zweier fortgeschrittener Gebiete der Physik. Sie kennen die Beziehungen der Gebiete zueinander und sind in der Lage Auswirkungen neuer Erkenntnisse eines Gebietes auf das jeweils andere aufzuzeigen.

Inhalte:
Zwei der Module:
- Einführung in die Festkörperphysik
- Atom und Molekülphysik
- Kohärente Optik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik (Vertiefungsmodul)
Bachelor Physik -- Wahlbereich

<table>
<thead>
<tr>
<th>Moderne Aspekte der Physik</th>
<th>1601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Auswahl von Lehrveranstaltungen im Umfang von mind. 12 LP gemäß Vorlesungsverzeichnis bzw. nach Lehrveranstaltungs-katalog (s.u.)</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §6 der Prüfungsordnung Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>12</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>1</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>240</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>240</td>
</tr>
<tr>
<td>Grundlegende Literatur:</td>
<td>Wird in den Veranstaltungen bekannt gegeben.</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td>Grundvorlesungen der Physik</td>
</tr>
<tr>
<td>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>• Bachelorstudiengang Physik (physikalische Wahlmodul)</td>
</tr>
<tr>
<td>Grundlagen der Lasermedizin und Biomedizinischen Optik</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Semesterlage</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Alexander Heisterkamp, Holger Lubatschowski</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Grundlagen der Lasermedizin und Biophotonik</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Prüfungsleistung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4 Präsenzstudium (h): 45</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Lasersysteme für den Einsatz in Medizin und Biologie
- Strahlführungssysteme und optische medizinische Geräte
- Optische Eigenschaften von Gewebe
- Thermische Eigenschaften von Gewebe
- Photochemische Wechselwirkung
- Vaporisation/Koagulation
- Photoablation, Optoakustik
- Photodisruption, nichtlineare Optik
- Anwendungen in der Augenheilkunde, refraktive Chirurgie
- Laser-basierte Diagnostik, optische Biopsie
- Optische Kohärenztomographie, Theragnostics
- klinische Anwendungsbeispiele

Grundlegende Literatur:
- Eichler, Seiler: "Lasertechnik in der Medizin." Springer-Verlag
- Berlien: "Applied Laser Medicine"
- Bille, Schlegel: Medizinische Physik. Bd. 2: Medizinische Strahlphysik, Springer
- Originalliteratur

Empfohlene Vorkenntnisse:
- Modul „Kohärente Optik”

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: begrenzte Anzahl von Vorträgen im Blockseminar (20 Plätze, 5 ECTS), Teilnahme an Vorlesung und Blockseminar unbegrenzt (4ECTS)

Verwendbarkeit:
- Bachelorstudiengang Physik/Techn. Physik (Vertiefungsphase, Moderne Aspekte der Physik)
- Masterstudiengang Physik/Technische Physik (Fortgeschrittene Vertiefungsphase, Moderne Aspekte der Physik)
Schlüsselkompetenzen

<table>
<thead>
<tr>
<th>Schlüsselkompetenzen</th>
<th>????</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche</td>
<td>Studiendekanat</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums oder des Zentrums für Schlüsselkompetenzen und entsprechend ausgewiesenen Angeboten der Fakultäten sowie Computerkurse aus dem Angebot des Rechenzentrums.</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §6 der Prüfungsordnung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>2-4</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>60-120</td>
</tr>
</tbody>
</table>

Kompetenzziele:
- Sie erlernen und beherrschen exemplarische Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltung

Inhalte:
- Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung

Grundlegende Literatur:
- Wird in der Lehrveranstaltung angegeben

Empfohlene Vorkenntnisse:
- Keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Physik
Bachelor Meteorologie – Kernmodule

<table>
<thead>
<tr>
<th>Modulvertretung (r)</th>
<th>Institut für Algebra, Zahlentheorie und Diskrete Mathematik und Institut für Algebraische Geometrie</th>
</tr>
</thead>
</table>

Lehrenveranstaltungen (SWS)
Vorlesung Lineare Algebra A
Übung zu Lineare Algebra A
Vorlesung Lineare Algebra B
Übung zu Lineare Algebra B

Leistungsnachweis zum Erwerb der LP
Studienleistung: Übungsaufgaben zu Lineare Algebra A und B
Prüfungsleistung: Jeweils eine Klausur zu Lineare Algebra A und B

Notenabschließung
Die Note der bessere der beiden Klausuren bestimmt die Gesamtnote des Moduls.

Leistungspunkte (ECTS):
Gewicht: 8
Präsenzstudium (h): 90
Selbststudium (h): 150

Kompetenzziele:

Inhalte:
- Grundlegende Eigenschaften von Vektorräumen (Basis und Dimension);
- lineare Abbildungen und Matrizen;
- lineare Gleichungssysteme mit Lösungsverfahren (Gauß-Algorithmus);
- Determinanten, Diagonalisierbarkeit;
- Euklidische Räume, Quadriken.

Grundlegende Literatur:
G. Fischer: Lineare Algebra

Empfohlene Vorkenntnisse:

gff. Eingangsvoraussetzungen und gff. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
<table>
<thead>
<tr>
<th>Modulkatalog B.Sc./M.Sc. Physik, Technische Physik, Meteorologie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>2551</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Analysis</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung „Analysis A“
Übung zu „Analysis A“
Vorlesung „Analysis B“
Übung zu „Analysis B“ |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben zu Analysis A und B
Prüfungsleistung: Jeweils eine Klausur zu Analysis A und B |
| Noten zusammensetzung | Die Note der bessere der beiden Klausuren bestimmt die Gesamtnote des Moduls. | |
| Leistungspunkte (ECTS): | 5 | 10 |
| Gewicht: | Präsenzstudium (h): 120 | Selbststudium (h): 180 |

| Kompetenzziele: |

| Inhalte: |
| Analysis A:
Analysis B:
Differentialrechnung im \(\mathbb{R}^n \), Extremwertaufgaben; einfache Differentialgleichungen. |

| Grundlegende Literatur: |
| H. Amann & J. Escher: *Analysis I und II*, Birkhäuser Verlag, 2002
O. Forster: *Analysis 1 und 2*, Vieweg+Teubner
K. Meyberg & P. Vachenauer: *Höhere Mathematik 1*, Springer-Verlag 2001 |

| Empfohlene Vorkenntnisse: |
| ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine |

| Verwendbarkeit: |
| • Bachelorstudiengang Meteorologie (Kernmodul) |
Angewandte Mathematik | 2552
Semesterlage | Winter- und Sommersemester
Modulverantwortliche(r) | Institut für Mathematische Stochastik, Institut für Angewandte Mathematik
Lehrveranstaltungen (SWS) | Vorlesung „Numerische Mathematik A“
| Übung zu „Numerische Mathematik A“
| Vorlesung „Stochastik“
| Übungen zu Stochastik A
Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben zu Numerische Mathematik A und Stochastik A
| Prüfungsleistung: Jeweils eine Klausur zu Numerische Mathematik A und Stochastik A
Notenzusammensetzung | Note der 2 Klausuren (zu je gleichem Gewicht)
Leistungspunkte (ECTS): | 8
| Gewicht: | 8
| Präsenzstudium (h): | 90
| Selbststudium (h): | 150
Kompetenzziele:
Sicherer Umgang mit stochastischen Methoden und statistischen Fragestellungen.
Inhalte:
Numerische Mathematik A:
• Interpolation von Funktionen durch Polynome und Splines
• Quadraturformeln zur numerischen Integration,
• direkte Verfahren für lineare Gleichungssysteme
• iterative Verfahren für lineare Gleichungssysteme
• Newton-Verfahren für nichtlineare Gleichungssysteme
• Kondition mathematischer Problemstellungen und Stabilität numerischer Algorithmen
Stochastik A:
• Wahrscheinlichkeitsräume
• Laplace-Experimente
• bedingte Wahrscheinlichkeiten und Unabhängigkeit,
• Zufallsgrößen und ihre Verteilungen,
• Zentrale Grenzwertsatz
Grundlegende Literatur:
Quarteroni, R. Sacco, F. Saleri: *Numerische Mathematik I und II. Springer-Verlag.*
Georgii, H.: *Stochastik, de Gruyter*
Empfohlene Vorkenntnisse:
ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine
Verwendbarkeit:
• Bachelorstudiengang Meteorologie (Kernmodul)
<table>
<thead>
<tr>
<th>Angewandtes Programmieren</th>
<th>2553</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Angewandtes Programmieren</td>
</tr>
<tr>
<td></td>
<td>Übung zu Angewandtes Programmieren</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistungen: Übungsaufgaben</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4 Prüfung (h): 45 Selbststudium (h):</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden beherrschen die Grundlagen des Programmierens in einer höheren Programmiersprache und können diese bei der Entwicklung eigener Programme zum Lösen einfacher Probleme selber anwenden (Methodenkompetenz).

Inhalte:
- Bausteine von Programmen: Anwendungsfolgen, Schleifen, Alternativen
- Programmablaufpläne, Struktogramme
- Sprachelemente von FORTRAN95: Datentypen, Felder, Ausdrücke, Feldausdrücke, IF-, CASE-, DO-Strukturen
- formatierte und unformatierte Ein-/Ausgabe, NAMELIST I/O
- Programmteile: Unterprogramme, Module, Interfaces

Grundlegende Literatur:

Empfohlene Vorkenntnisse: keine

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
Einführung in die Meteorologie | 2560

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Sommer- und Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Einführung in die Meteorologie I
Vorlesung Einführung in die Meteorologie II
Übung zu Einführung in die Meteorologie I
Übung zu Einführung in die Meteorologie II |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben zu Einführung in die Meteorologie I und II
Prüfungsleistung: Jeweils eine Klausur zur Einführung in die Meteorologie I und II |
| Notenzusammensetzung | Note der zwei Klausuren mit je gleichem Gewicht |
| Leistungspunkte (ECTS): | Gewicht: Präsenzstudium (h): Selbststudium (h):
8 | 8 | 90 | 150 |
| Kompetenzziele: | Die Studierenden haben nach Abschluss des Zyklus einen Überblick über Meteorologie und Umweltphysik, sodass Kompetenzen für die spätere Einordnung weiterführender Vorlesungen in das Studium erlangt werden können. Die Übungen fördern auch die Kommunikationsfähigkeit und die Methodenkompetenz bei der Umsetzung von Fachwissen. |
| Inhalte: | Einführung in die Meteorologie I:
| Einführung in die Meteorologie II:
| Grundlegende Literatur: |
Kraus, *Die Atmosphäre der Erde: Eine Einführung in die Meteorologie*, Springer
Hauf, Seckmeyer, *Skript zur Vorlesung Einführung in die Meteorologie I*
Hauf, Seckmeyer, *Skript zur Vorlesung Einführung in die Meteorologie II*
Häckel, *Meteorologie*, UTB, Stuttgart
Roedel, *Physik unserer Umwelt*, Springer
Liljequist, *Allgemeine Meteorologie*, Springer |
| Verwendbarkeit: |
• Bachelorstudiengang Meteorologie (Kernmodul)
• Bachelor Geographie
• Master Landschaftsarchitektur
• Bachelor und Master Physik |
Strahlung

<table>
<thead>
<tr>
<th>Modulkatalog B.Sc./ M.Sc. Physik, Technische Physik, Meteorologie</th>
</tr>
</thead>
</table>

Semesterlage

| Sommersemester und Wintersemester |

Modulverantwortliche(r)

| Institut für Meteorologie und Klimatologie |

Lehrveranstaltungen (SWS)

| Vorlesung Strahlung I |
| Vorlesung Strahlung II |
| Übung zu Strahlung I |
| Übung zu Strahlung II |

Leistungsnachweis zum Erwerb der LP

| Studienleistung: Übungen jeweils zu Strahlung I, Strahlung II |
| Prüfungsleistung: mündliche Prüfung |

Notenzusammensetzung

| Note der mündlichen Prüfung |

Leistungspunkte (ECTS): 8

<table>
<thead>
<tr>
<th>Gewicht:</th>
<th>Prüfung: Staatsexamen (h):</th>
<th>Selbststudium (h):</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>90</td>
<td>150</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:

- grundlegende Begriffe der Strahlungsphysik, Strahlungsprozesse in der Atmosphäre
- Messmethoden der Strahlungsphysik
- Grundlagen der Lichttechnik
- Astronomische, Chemische, Biologische und medizinische Grundlagen
- Verfahren zur Berechnung des Strahlungstransfers in der Atmosphäre

Grundlegende Literatur:

- Seckmeyer, *Skript zur Vorlesung Strahlung*
- Bergmann-Schäfer, Band 3 *Optik*, Gruyter

Empfohlene Vorkenntnisse:

- Modul Einführung in die Meteorologie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

- Bachelorstudiengang Meteorologie (Kernmodul)
- Master Studienfach optische Technologien
- Bachelor und Master Physik
Wolkenphysik

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Wolkenphysik, Übung zu Wolkenphysik</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungen, Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>Präsenzstudium (h): 45</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden haben vertiefte physikalische Kenntnisse in Wolkenphysik und können diese in Beispielen selber anwenden. In den theoretischen und experimentellen Übungen oder beim Erarbeiten eines Vortrages wird die Methodenkompetenz bei der Umsetzung von Fachwissen gefördert aber auch die Kommunikationsfähigkeit.

Inhalte:
- Die Bedeutung der Wolken für Klima, Luftreinhaltung, Niederschlagsbildung, Strahlungs- und Energiehaushalt; der internationale Wolkenatlas
- Theoretische Grundlagen, Strahlung und Wolken, optische Effekte
- Die beobachtete mikrophysikalische Struktur von Wolken
- Der allgemeine Wolken- und Niederschlagsbildungsprozess
- Wolkendynamik und Wolkenmodellierung, wolkenphysikalische Messgeräte

Grundlegende Literatur:
- Rogers, *Cloud Physics* A Butterworth-Heinemann Title; 3 edition

Empfohlene Vorkenntnisse:
- Modul Einführung in die Meteorologie
- Vorlesung und Übung Thermodynamik und Statik (im Modul Theoretische Meteorologie)

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
- Bachelor und Master Physik
Instrumentenpraktikum

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Praktikum Instrumentenpraktikum</td>
</tr>
</tbody>
</table>

Leistungsnachweis zum Erwerb der LP
- Studienleistung: Laborübung

Notenzusammensetzung
-

Leistungspunkte (ECTS):
- Präsenzstudium (h): 90
- Selbststudium (h): 90

Kompetenzziele:
Die Studierenden kennen die grundlegenden meteorologischen Messmethoden und können diese selber praktisch anwenden, wobei die kritische Beurteilung von Messergebnissen hinsichtlich ihrer Aussagekraft und Genauigkeit von wichtiger Bedeutung ist. Die Durchführung der Experimente in Kleingruppen fördert zudem die Teamfähigkeit.

Inhalte:
- Durchführung von Labor- und Feldversuchen mit Messungen der meteorologischen Grundgrößen Temperatur, Druck, Feuchte, Windgeschwindigkeit sowie einzelner Komponenten der Strahlungs- und Energiebilanz

Grundlegende Literatur:
- Skript zum Instrumentenpraktikum

Empfohlene Vorkenntnisse:
- Module Einführung in die Meteorologie
- Module Mechanik und Relativität, Elektrizität, Optik, Atomphysik, Quantenphänomene und Moleküle, Kerne, Teilchen, Festkörper
- Modul Strahlung

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
- Master Landschaftswissenschaften
- Bachelor Physik
<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Klimatologie</td>
</tr>
<tr>
<td></td>
<td>Übung zu Klimatologie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungen</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: Klausur</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Klausur</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>4</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>45</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>75</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Klimasystem: Komponenten des Klimasystems
- Klimate der Erde
- Energie- und Wasserhaushalt
- Allgemeine Zirkulation der Atmosphäre und des Ozeans
- regionale Zirkulationssysteme
- Klimaveränderungen
- Klimamodellierung
- Klimavorhersage
- Klimapolitik

Grundlegende Literatur:
- Mahlberg, Meteorologie und Klimatologie, Springer Verlag
- Peixoto & Oort, Physics of Climate, Springer Verlag
- Roedel, Physik unserer Umwelt, Springer Verlag
- Schönwiese, Klimatologie, UTB, Stuttgart

Empfohlene Vorkenntnisse:
- Module Einführung in die Meteorologie

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
- Bachelor Geographie
- Bachelor und Master Physik
Theoretische Meteorologie 2561

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Winter- und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Thermodynamik und Statik
| | Übung zu Thermodynamik und Statik
| | Vorlesung Kinematik und Dynamik
| | Übung zu Kinematik und Dynamik
| | Vorlesung Turbulenz und Diffusion
| | Übung zu Turbulenz und Diffusion |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben zu Thermodynamik und Statik, Kinematik und Dynamik, sowie Turbulenz und Diffusion
| Prüfungsleistung: Jeweils eine Klausur zu Thermodynamik und Statik, Kinematik und Dynamik, sowie Turbulenz und Diffusion |
| Notenzusammensetzung | Note der 3 Klausuren (zu je gleichem Gewicht) |
| Leistungspunkte (ECTS): | 12 |
| Gewicht: | 12 |
| Präsenzstudium (h): | 135 |
| Selbststudium (h): | 225 |

Kompetenzziele:
Die Studierenden lernen die Grundlagen der theoretischen Meteorologie und können diese in Beispielen selber anwenden (Methodenkompetenz).

Inhalte:
Thermodynamik und Statik
- Erster und zweiter Hauptsatz der Thermodynamik, Entropie, Carnot'scher Kreisprozess, Wirkungsgrad
- potentielle Temperatur, thermische Schichtung, vertikaler Aufbau der ruhenden Atmosphäre
- Wasser und seine Phasenübergänge
- thermodynamische Diagrammpapiere

Kinematik und Dynamik
- physikalisch-mathematischen Grundlagen atmosphärischer Strömungen: Eulersche Bewegungsgleichung, Vorticity-Gleichung (2D/3D), quasi-geostrophische Gleichungen
- meteorologische Phänomene: geostrophischer und thermischer Wind, Schallwellen, Schwerewellen, Rossbywellen
- Linearisierung, Stabilitätsanalyse
- barotrope und barokline Instabilität

Turbulenz und Diffusion
- Meteorologische Phänomene, die durch Reibung dominiert werden
- Navier-Stokes-Gleichung
- Reynolds-Mittelung, Gleichung für die turbulente kinetische Energie, Richardson-Fluss-Zahl
- Vorgänge in der atmosphärischen Grenzschicht: Prandtl-Schicht, Ekman-Schicht

Grundlegende Literatur:
- Etling, *Theoretische Meteorologie*, Springer Verlag
- Bohren und Albrecht, *Atmospheric Thermodynamics, Oxford University Press*
- Holton, J.R.: *An Introduction to Dynamic Meteorology, Academic Press*
- Dutton, J.A.: *The Ceaseless Wind*, Dover Pubns
- Stull, R.B.: *An Introduction to Boundary Layer Meteorology, Springer*

Empfohlene Vorkenntnisse:
- Modul Einführung in die Meteorologie
- Module Mechanik und Relativität
- Vorlesung und Übungen zu Mathematische Methoden der Physik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
Synoptische Meteorologie

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Vorlesung Synoptische Meteorologie I
Übung „Übungen zur operationellen Synoptik“
Vorlesung Synoptische Meteorologie II
Seminar Wetterbesprechung
Übung "Einführung in das Arbeiten mit NINJO" |
| Leistungsnachweis zum Erwerb der LP | Studienleistung: Übungsaufgaben zu den Vorlesungen und Seminarleistung Wetterbesprechung |
| Notenzusammensetzung | - |
| Leistungspunkte (ECTS): | 8 |
| Präsenzstudium (h): | 164 |
| Selbststudium (h): | 76 |

Kompetenzziele:
Die Studierenden verstehen die Grundlagen der Wetteranalyse und -vorhersage, erstellen unter Anleitung und mit vorhandenen Informationssystemen Wetteranalysen und -vorhersagen und präsentieren diese schriftlich und mündlich mit anschließender Diskussion. Sie entwickeln so neben der Fachkompetenz Kompetenzen im Medieneinsatz, kritischer Diskussion, Präsentation vor Fachpublikum, als auch der kundenorientierten Aufbereitung/Präsentation von Fachwissen.

Inhalte:
- Nutzung moderner meteorologischer Informationssysteme
- Analyse atmosphärischer Zustände
- Vorhersage der Wetterentwicklung
- Präsentation der Ergebnisse
- Eigene Beiträge zur wissenschaftlichen Diskussion von Wetteranalyse und -vorhersage

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Modul Einführung in die Meteorologie
- Vorlesungen und Übungen zu Thermodynamik und Statik, sowie Kinematik und Dynamik

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
- Master Landschaftswissenschaften
<table>
<thead>
<tr>
<th>Studium und Beruf</th>
<th>2105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester, vorlesungsfreie Zeit (Praktikum), nachfolgendes Wintersemester (Vortrag)</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Seminar Einführung in das Studium der Meteorologie Praktikum Berufskundliches Praktikum</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Praktikum mit Praktikumsbericht</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>5</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>150</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden werden im ersten Semester in das Studium der Meteorologie eingeführt, mit den spezifischen Anforderungen in fachlicher und methodischer Hinsicht vertraut gemacht, lernen Dozenten und Forschung am Institut und die meteorologische Berufswelt in Bezug zu ihren eigenen Berufs- und Studienvorstellungen kennen.

Inhalte:
- Einführung in die Einrichtungen der Universität und den studentischen Alltag
- Einführung in die Forschung am Institut
- 4-wöchige praktische Tätigkeit an Arbeitsplatz in Forschung, Behörden oder Industrie unter meteorologischer Betreuung individuelle Studienberatung/Mentoring

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Kernmodul)
<table>
<thead>
<tr>
<th>Kompetenzziele:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Teilnahme an einer ein- oder zweiwöchigen, im allgemeinen thematisch orientierten Exkursion (z.B. maritim oder alpin)</td>
<td></td>
</tr>
<tr>
<td>• Vorbereitung auf einen thematischen Teilaspekt der Exkursion und anschließender schriftlicher Ausarbeitung als Beitrag zum Exkursionsbericht. Vortrag (10 Min.) im Exkursionsabschlussseminar.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grundlegende Literatur:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modul Studium und Beruf</td>
<td></td>
</tr>
<tr>
<td>• Vorlesung Einführung in die Meteorologie I</td>
<td></td>
</tr>
</tbody>
</table>

| ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine | |

<table>
<thead>
<tr>
<th>Verwendbarkeit:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bachelorstudiengang Meteorologie (Kernmodul)</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor Meteorologie – Wahlbereich

<table>
<thead>
<tr>
<th>Wahlmodul Meteorologie</th>
<th>2107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester oder Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Siehe Lehrveranstaltungskatalog</td>
</tr>
</tbody>
</table>
| Leistungsnachweis zum Erwerb der LP | Studienleistung: gemäß §6 der Prüfungsordnung
 Prüfungsleistung: mündliche Prüfung
 (Prüfung erstreckt sich über einen Umfang von mindestens 8LP) |
| Notenzusammensetzung | Note der mündlichen Prüfung |
| Leistungspunkte (ECTS): 20 Gewicht: 8 | Präsenz- und Selbststudium (h): 600 |

Kompetenzziele:
Erweiterung der Fachkompetenz.

Inhalte:
- Siehe Lehrveranstaltungskatalog
- Ein Programmierpraktikum muss gewählt werden

Grundlegende Literatur:
Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:
- Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
Siehe Lehrveranstaltungskatalog

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Wahlbereich Meteorologie)
Bachelor Meteorologie – Naturwissenschaftlich-technischer Wahlbereich

| Modulkatalog B.Sc./M.Sc. Physik, Technische Physik, Meteorologie |

Naturwissenschaftlich-technischer Wahlbereich

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester oder Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 12 LP der Fakultät für Mathematik und Physik, Fakultät für Elektrotechnik und Informatik, Fakultät für Maschinenbau und der naturwissenschaftlichen Fakultät oder auf Antrag Module anderer Fakultäten</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Gemäß Prüfungsordnung der anbietenden Fakultät. Sieht die Prüfungsordnung der anbietenden Fakultät keine Studienleistung, sondern eine Prüfungsleistung vor, so wird die erbrachte Prüfungsleistung als Studienleistung behandelt und anerkannt.</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>–</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>12</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>360</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Erwerb interdisziplinären Wissens in andere naturwissenschaftlichen oder technischen Disziplinen.

Inhalte:
- Siehe Lehrveranstaltungskatalog

Grundlegende Literatur:

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:

Verwendbarkeit:
- Bachelorstudiengang Meteorologie (Naturwissenschaftlich-technischer Wahlbereich)
Bachelor Meteorologie – Schlüsselkompetenzen

<table>
<thead>
<tr>
<th>Schlüsselkompetenzen</th>
<th>2570</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §6 der Prüfungsordnung</td>
</tr>
<tr>
<td>Noten zusammensetzung</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>60-120</td>
</tr>
</tbody>
</table>
| Kompetenzziele: | • Die Studierenden können wissenschaftliche Texte verfassen und beherrschen die Grundlagen korrekten Zitierens und Belegen.
• Sie erlernen und beherrschen exemplarisch Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltung |
| Inhalte: | • Grundlagen wissenschaftlichen Schreibens
• Umgang mit Fachliteratur
• Korrektes Zitieren und Belegen
• Weitere Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung |
| Grundlegende Literatur: | • Wird in der Lehrveranstaltung angegeben |
| Empfohlene Vorkenntnisse: | • Keine |
| ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: | keine |
| Verwendbarkeit: | • Bachelorstudiengang Meteorologie (Kernmodul) |
Master Physik/Technische Physik – Fortgeschrittene Vertiefungsphase

<table>
<thead>
<tr>
<th>Fortgeschrittene Festkörperphysik</th>
<th>1221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute für Festkörperphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Fortgeschrittene Festkörperphysik, Übung zu Fortgeschrittene Festkörperphysik</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Kurztests und/oder Übungsaufgaben, Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Prüfungsleistung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>5</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>Präsenzstudium (h): 60</td>
</tr>
</tbody>
</table>
| Inhalte: | • Supraleitung
 • Dia- und Paramagnetismus
 • Ferro- und Antiferromagnetismus
 • Magnetische Resonanz
 • endliche Festkörper
 • Physik in einer und zwei Dimensionen, an Oberflächen und Grenzflächen
 • Unordnung im Festkörper: Defekte, Legierungen, Gläser |
| Grundlegende Literatur: | 📘 Ashcroft, Mermin, *Festkörperphysik*, Oldenbourg Verlag
 📘 Ch. Kittel, *Einführung in die Festkörperphysik*, Oldenbourg Verlag |
| Empfohlene Vorkenntnisse: | • Einführung in die Festkörperphysik |
| ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine |
| Verwendbarkeit: | • Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase) |
Fortgeschrittene Gravitationsphysik

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute für Gravitationsphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Gravitationsphysik</td>
</tr>
<tr>
<td></td>
<td>Übung zu Gravitationsphysik</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Prüfungsleistung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td></td>
</tr>
<tr>
<td>Gewicht:</td>
<td>5</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>60</td>
</tr>
<tr>
<td>Selbststudium (h):</td>
<td>90</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Die Studierenden verstehen die grundlegenden Konzepte der Fortgeschrittenen Gravitationsphysik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:

- Allgemeine Relativitätstheorie
- Äquivalenzprinzip, Lense-Thirring-Effekt
- Kosmologie
- Astrophysik
- Quellen und Ausbreitung von Gravitationswellen
- Laserinterferometer
- Interferometer-Recycling-Techniken
- Modulationsfelder
- Homodyn- und Heterodyndetektion
- Interferometer-Kontrolle
- Optische, mechanische und thermische Eigenschaften von Spiegeln und deren dielektrische Beschichtungen

Grundlegende Literatur:

wird in der Vorlesung angegeben

Empfohlene Vorkenntnisse:

- Grundlagen der Speziellen Relativitätstheorie
- Modul „Kohärente Optik“

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:

- Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)
Quantenoptik

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Quantenoptik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Quantenoptik Übung zu Quantenoptik</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungsaufgaben Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Prüfungsleistung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>Präsenzstudium (h): 60 Selbststudium (h): 90</td>
</tr>
<tr>
<td>Gewicht</td>
<td>5 1</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden verstehen die grundlegenden Konzepte der Quantenoptik und können diese eigenständig auf ausgewählte Probleme anwenden. Sie kennen fortgeschrittene experimentelle Methoden des Gebietes und können diese unter Anleitung anwenden.

Inhalte:
- Quantisierung des EM-Feldes
- Quantenzustände des EM-Feldes (Fock, Glauber, squeezed states)
- Heisenbergsche Undschärfe Relation (Anzahl/ Phase, Amplituden-/ Phasenquadratur)
- Photonenstatistik, Quantenrauschen
- Bell’s Ungleichung und Nichtlokalität
- Erzeugung von Squeezing und Entanglement
- Spontane Emission, Lamb shift, Casimir-Effekte
- Atom-Feld-Wechselwirkung mit kohärenten Feldern, dressed states
- Photonen-Streuung, Feyman-Graphen
- Mehrphotonen-Prozesse
- Quantentheorie der nichtlinearen Suszeptibilität
- Experimente der modernen Quantenoptik

Grundlegende Literatur:

- Walls/Milburn, *Quantum Optics*, Springer
- Schleich, *Quantum Optics in Phase space*, Wiley-VCH
- Originalliteratur

Empfohlene Vorkenntnisse:
- Modul „Kohärente Optik”

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)
- Masterstudiengang Technische Physik (Fortgeschrittene Vertiefungsphase)
<table>
<thead>
<tr>
<th>Quantenfeldtheorie</th>
<th>1121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester oder Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Theoretische Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Quantenfeldtheorie Übung zu Quantenfeldtheorie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Übungsaufgaben Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Prüfungsleistung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>5 1</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>Präsenzstudium (h): 60 Selbststudium (h): 90</td>
</tr>
<tr>
<td>Inhalte:</td>
<td>• Klassische Feldtheorie • Kanonische Feldquantisierung (skalares Feld, Dirac-Feld, Vektorfeld) • Störungsrechnung und Feynman-Regeln • Pfadintegral-Quantisierung (Quantenmechanik, skalares Feld, kohärente Zustände) • Renormierung (Regularisierung, Renormierung, effektive Wirkung) • Quantisierung von Eichfeldern (QED, Yang-Mills) • Endliche Temperaturen & Statistische Mechanik</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td>• Veranstaltung „Fortgeschrittene Quantentheorie“</td>
</tr>
<tr>
<td>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>• Masterstudiengang Physik (Fortgeschrittene Vertiefungsphase)</td>
</tr>
</tbody>
</table>
Elektronik und Messtechnik

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester oder Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Festkörperphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Vorlesung Elektronik, Vorlesung Messtechnik, Elektronikpraktikum</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Laborübung, Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Prüfungsleistung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen (SWS)
- Vorlesung Elektronik
- Vorlesung Messtechnik
- Elektronikpraktikum

Leistungsnachweis zum Erwerb der LP
- Prüfungsleistung: mündliche Prüfung oder Klausur nach Wahl der Dozenten

Notenzusammensetzung
- Note der Prüfungsleistung

Leistungspunkte (ECTS)
- Gewicht: 8
- Pränzestudium (h): 120
- Selbststudium (h): 120

Kompetenzziele:
Die Studierenden lernen experimentelle und numerische Methoden kennen, wenden diese selber an und entwickeln Modellvorstellungen zur Erklärung der experimentellen und numerischen Ergebnisse. Sie kennen die Funktion elektronischer Bauelemente und können diese zur Messdatenerfassung richtig einsetzen.

Inhalte:
- Grundbegriffe der Elektronik
- Passive Bauelemente
- Transistor
- Analog Grundschatungen (Filter)
- Operationsverstärker
- Statische und dynamische OP-Beschaltung
- Grundlagen der Hochfrequenztechnik
- Signalgeneratoren / Phasenschieber
- Elektronische Regler
- DAAD Wandlung
- Praktikum: Auswahl verschiedener Versuche zu den Themen der Vorlesungen

Grundlegende Literatur:
- Hering, Bressler, Gutekunst, *Elektronik für Ingenieure*, Springer Verlag

Empfohlene Vorkenntnisse:
- Module „Mechanik und Relativität“, „Elektrizität“, „Optik, Atomphysik, Quantenphänomene“ und „Moleküle, Kerne, Teilchen, Festkörper"

ggfs. Eingangsvoraussetzungen und ggfs. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang technische Physik (Fortgeschrittene Vertiefungsphase)
Ausgewählte Themen moderner Physik A

<table>
<thead>
<tr>
<th>Semestrlage</th>
<th>Wintersemester oder Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 27 Leistungspunkten gemäß Vorlesungsverzeichnis.</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §6 der Prüfungsordnung</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS): Gewicht:</td>
<td>27 1</td>
</tr>
<tr>
<td>Präsenzstudium (h): Selbststudium (h):</td>
<td></td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
Fortgeschrittene Lehrveranstaltungen der Physik nach Wahl der Studierenden
Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 12 LP.

Grundlegende Literatur:
Wird in den Lehrveranstaltungen bekannt gegeben

Empfohlene Vorkenntnisse:
Gemäß Lehrveranstaltungskatalog

ggff. Eingangsvoraussetzungen und ggff. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Physik (Schwerpunktsphase)
<table>
<thead>
<tr>
<th>Ausgewählte Themen moderner Physik B</th>
<th>1622</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester oder Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 17 Leistungspunkten gemäß Vorlesungsverzeichnis.</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §6 der Prüfungsordnung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>17</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>1</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>Selbststudium (h):</td>
</tr>
<tr>
<td>Inhalte:</td>
<td>Fortgeschrittene Lehrveranstaltungen der Physik nach Wahl der Studierenden</td>
</tr>
<tr>
<td></td>
<td>Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 12 LP.</td>
</tr>
<tr>
<td>Grundlegende Literatur:</td>
<td>Wird in den Lehrveranstaltungen bekannt gegeben</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td>Gemäß Lehrveranstaltungskatalog</td>
</tr>
<tr>
<td></td>
<td>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: Ist zusammen mit dem Modul Industriepraktikum zu wählen</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>Masterstudiengang Physik (Schwerpunktsphase)</td>
</tr>
</tbody>
</table>
Ausgewählte Themen der Photonik [1021]

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester oder Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Quantenoptik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 18 LP gemäß Vorlesungsverzeichnis</td>
</tr>
</tbody>
</table>
| Leistungsnachweis zum Erwerb der LP | Studienleistung: gemäß §14 der Prüfungsordnung
Prüfungsleistung: mündliche Prüfung |
| Notenzusammensetzung | Note der mündlichen Prüfung | |
| Leistungspunkte (ECTS): | Präsenzstudium (h): | Selbststudium (h): |
| Gewicht: | 18 | 1 |

Kompetenzziele:

Inhalte:
Fortgeschrittene Lehrveranstaltungen der Physik nach Wahl der Studierenden
Die Prüfung erstreckt sich über Lehrveranstaltungen im Umfang von mindestens 4 LP nach Wahl der Studierenden

Grundlegende Literatur:
Wird in den Lehrveranstaltungen bekannt gegeben

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Technische Physik (Schwerpunktsphase)
<table>
<thead>
<tr>
<th>Ausgewählte Themen der Nanoelektronik</th>
<th>1022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester oder Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Festkörperphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 18 LP gemäß Vorlesungsverzeichnis</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §14 der Prüfungsordnung</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>18</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>1</td>
</tr>
<tr>
<td>Präsenzstudium (h):</td>
<td>Selbststudium (h):</td>
</tr>
<tr>
<td>Inhalte:</td>
<td>Fortgeschrittene Lehrveranstaltungen der Physik nach Wahl der Studierenden</td>
</tr>
<tr>
<td></td>
<td>Die Prüfung erstreckt sich über Lehrveranstaltungen im Umfang von mindestens 4 LP nach Wahl der Studierenden</td>
</tr>
<tr>
<td>Grundlegende Literatur:</td>
<td>Wird in den Lehrveranstaltungen bekannt gegeben</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>• Masterstudiengang Technische Physik (Schwerpunktsphase)</td>
</tr>
<tr>
<td>Semesterlage</td>
<td>Wintersemester oder Sommersemester</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Seminar</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: Seminarleistung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Seminarleistung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS): 3</td>
<td>Präsenzstudium (h): 30</td>
</tr>
</tbody>
</table>

Kompetenzziele:
- Die Studierenden sind in der Lage, zu einem vorgegebenen, aktuellen Thema aus der modernen Physik, das z.T. noch Gegenstand der Forschung ist, selbstständig Literatur zu recherchieren.
- Die Studierenden sind in der Lage, sich ein aktuelles Wissensgebiet selbstständig zu erarbeiten.
- Die Studierenden können einen Vortrag über ein komplexes Thema der modernen Physik strukturieren und halten, dass ein physikalisch gebildetes Publikum dem Vortrag gut folgen kann. Durch die Gestaltung des Vortrags können sie die Zuhörer auch für ein komplexes Spezialthema interessieren.
- Die Studierenden sind in der Lage eine ansprechende Präsentation zu erstellen. (PowerPoint o.ä.).
- Die Studierenden sind in der Lage, eine wissenschaftliche Diskussion zu führen (über das eigene Thema genauso wie über die Themen der anderen Seminarteilnehmer).
- Die Studierenden beherrschen die deutsche bzw. englische Fachsprache in freier Rede.

Inhalte:
Fortgeschrittene Themen der Physik

Grundlegende Literatur:
wird in den Lehrveranstaltungen bekanntgegeben

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Physik (Schwerpunktsphase)
- Masterstudiengang technische Physik (Schwerpunktsphase)
<table>
<thead>
<tr>
<th>Schlüsselkompetenzen</th>
<th>1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche</td>
<td>Studiendekanat</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums oder des Zentrums für Schlüsselkompetenzen und entsprechend ausgewiesenen Angeboten der Fakultäten sowie Computerkurse aus dem Angebot des Rechenzentrums.</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: gemäß §6 der Prüfungsordnung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4 - 10</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>120 - 300</td>
</tr>
<tr>
<td>Kompetenzziele:</td>
<td>• Sie erlernen und beherrschen exemplarische Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltung</td>
</tr>
<tr>
<td>Inhalte:</td>
<td>• Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung</td>
</tr>
<tr>
<td>Grundlegende Literatur:</td>
<td>• Wird in der Lehrveranstaltung angegeben</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td>• Keine</td>
</tr>
<tr>
<td>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>• Masterstudiengang Physik</td>
</tr>
<tr>
<td></td>
<td>• Studierende des englischen Zweiges des MA Physik absolvieren in Abhängigkeit vom Resultat der verpflichtenden Beratung Sprachkurse in Deutsch in einem Umfang von bis zu 10 LP in diesem Modul.</td>
</tr>
<tr>
<td></td>
<td>• Für alle anderen Studierenden umfasst dieses Modul 4 LP</td>
</tr>
<tr>
<td>Industriepraktikum</td>
<td>1831</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>Semesterlage</td>
<td>Wintersemester oder Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Experimentalphysik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>-</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Praktikumsbericht</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>10</td>
</tr>
</tbody>
</table>

Präsenzstudium (h):

Selbststudium (h):

Kompetenzziele:

Inhalte:
Praktikum in einem Industriebetrieb

Grundlegende Literatur:

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang technische Physik (Praktikum)
- Master Studiengang Physik (Modul Ausgewählte Themen moderner Physik B)
Master Meteorologie – Fortgeschrittene Meteorologie

<table>
<thead>
<tr>
<th>Seminare zur Fortgeschrittene Meteorologie</th>
<th>2301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>2 Seminare aus unterschiedlichen fachlichen Bereichen der Meteorologie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: 2 Seminarleistungen</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>10</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>1</td>
</tr>
</tbody>
</table>

Kompetenzziele:
- Die Studierenden sind in der Lage, zu einem vorgegebenen, aktuellen Thema aus der modernen Meteorologie, das z.T. noch Gegenstand der Forschung ist, selbstständig Literatur zu recherchieren.
- Die Studierenden sind in der Lage, sich ein aktuelles Wissensgebiet selbstständig zu erarbeiten.
- Die Studierenden können einen Vortrag über ein komplexes Thema der modernen Meteorologie strukturieren und halten, dass ein meteorologisch gebildetes Publikum dem Vortrag gut folgen kann.
- Durch die Gestaltung des Vortrags können sie die Zuhörer auch für ein komplexes Spezialthema interessieren.
- Die Studierenden sind in der Lage eine ansprechende Präsentation zu erstellen. (PowerPoint o.ä.).
- Die Studierenden sind in der Lage, eine wissenschaftliche Diskussion zu führen (über das eigene Thema genauso wie über die Themen der anderen Seminarteilnehmer).

Die Studierenden beherrschen die deutsche bzw. englische Fachsprache in freier Rede

Inhalte:
- Fortgeschrittene Themen der Meteorologie

Grundlegende Literatur:

Wird in der Lehrveranstaltung bekannt gegeben.

Empfohlene Vorkenntnisse:
Wird in der Lehrveranstaltung bekannt gegeben.

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Meteorologie (Fortgeschrittene Meteorologie)
Fortgeschrittenenpraktikum

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Vorlesungsfreie Zeit zw. Winter und Sommer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Fortgeschrittenenpraktikum</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Laborübung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>Präsenz- und Selbststudium (h):</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden können moderne meteorologische Messmethoden selbst forschungsnah und praktisch in einer Feldmesskampagne einsetzen. Hierbei wird die Methodenkompetenz im Umgang mit großen Datenmengen und deren Auswertung gestärkt, sowie die kritische Beurteilung der Messergebnisse geschult. Das Arbeiten in Kleingruppen, das Kooperieren zwischen den Kleingruppen, sowie das Erstellen eines gemeinsamen Abschlussberichtes fördert in besonderem Maße die Teamfähigkeit.

Inhalte:
- Durchführung von Feldversuchen im Rahmen einer üblicherweise zweiwöchigen Messkampagne zu ausgewählten aktuellen Forschungsaufgaben.

Grundlegende Literatur:
Skript zum Instrumentenpraktikum

Empfohlene Vorkenntnisse:

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Meteorologie (Fortgeschrittene Meteorologie)
<table>
<thead>
<tr>
<th>Schlüsselkompetenzen</th>
<th>2670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen aus dem Angebot des Fachsprachenzentrums oder des Zentrums für Schlüsselkompetenzen und entsprechend ausgewiesenen Angeboten der Fakultäten, sowie Computerkurse aus dem Angebot des Rechenzentrums.</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: :gemäß §6 der Prüfungsordnung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>--</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>4</td>
</tr>
<tr>
<td>Kompetenzziele:</td>
<td>Die Studierenden erlernen und beherrschen exemplarische Schlüsselkompetenzen auf dem Gebiet der gewählten Lehrveranstaltungen</td>
</tr>
<tr>
<td>Inhalte:</td>
<td>Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung</td>
</tr>
<tr>
<td>Grundlegende Literatur:</td>
<td>Inhalte in Abhängigkeit von der gewählten Lehrveranstaltung</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
<td>Keine</td>
</tr>
<tr>
<td>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>Masterstudiengang Meteorologie (Schlüsselkompetenzen)</td>
</tr>
</tbody>
</table>
Master Meteorologie – Wahlbereich

<table>
<thead>
<tr>
<th>Ausgewählte Themen moderner Meteorologie A</th>
<th>2202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 8 LP aus dem Veranstaltungskatalog der Meteorologie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: nach Wahl der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS): Gewicht:</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>240</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
Lehrveranstaltungen im Umfang von 8 Leistungspunkten gemäß Vorlesungsverzeichnis bzw. Lehrveranstaltungskatalog.
Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 8 LP.

Grundlegende Literatur:
Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:
Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
Siehe Lehrveranstaltungskatalog

Verwendbarkeit:
- Masterstudiengang Meteorologie (Wahlbereich Meteorologie)
Ausgewählte Themen moderner Meteorologie B

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Wintersemester und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 8 LP aus dem Veranstaltungskatalog der Meteorologie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: mündliche Prüfung</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der mündlichen Prüfung</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>8</td>
</tr>
<tr>
<td>Gewicht:</td>
<td>1</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>240</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
Lehrveranstaltungen im Umfang von 8 Leistungspunkten gemäß Vorlesungsverzeichnis bzw. Lehrveranstaltungskatalog.
Die Prüfung erstreckt sich über thematisch zusammenhängende Lehrveranstaltungen im Umfang von mindestens 8 LP.

Grundlegende Literatur:
Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:
Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
Siehe Lehrveranstaltungskatalog

Verwendbarkeit:
- Masterstudiengang Meteorologie (Wahlbereich Meteorologie)
<table>
<thead>
<tr>
<th>Ausgewählte Themen moderner Meteorologie C</th>
<th>2651</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Wintersemester und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Lehrveranstaltungen im Umfang von mindestens 8 LP aus dem Veranstaltungskatalog der Meteorologie</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: nach Wahl der Dozentin oder des Dozenten Prüfungsleistung: -</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Modul wird nicht benotet</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS): 8</td>
<td>240</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
Lehrveranstaltungen im Umfang von 8 Leistungspunkten gemäß Vorlesungsverzeichnis bzw. Lehrveranstaltungskatalog.
Es kann auch maximal ein weiteres Seminar zur fortgeschrittenen Meteorologie (SLP) eingebracht werden (siehe Lehrveranstaltungskatalog)
In Absprache mit einer Dozentin oder einem Dozenten der Meteorologie kann anstelle einer Lehrveranstaltung eine schriftliche Arbeit im Umfang von 3 LP in das Modul eingebracht werden.

Grundlegende Literatur:
Siehe Lehrveranstaltungskatalog

Empfohlene Vorkenntnisse:
Siehe Lehrveranstaltungskatalog

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
Siehe Lehrveranstaltungskatalog

Verwendbarkeit:
- Masterstudiengang Meteorologie (Wahlbereich Meteorologie)
Abschlussarbeiten und Forschungsphase

<table>
<thead>
<tr>
<th>Bachelorprojekt</th>
<th>9001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Beginn ganzjährig möglich</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Studiendekan/in</td>
</tr>
</tbody>
</table>
| Lehrveranstaltungen (SWS) | Projekt „Bachelorarbeit“
 Seminar „Arbeitsgruppenseminar“ |
| Leistungsnachweis zum Erwerb der LP | Prüfungsleistung: Bachelorarbeit
 Studienleistung: Seminarleistung |
| Notenzusammensetzung | |
| Leistungspunkte (ECTS): | 15 Präsenz- und Selbststudium (h): 450 |

Kompetenzziele:

Inhalte:
- Einführung in das wissenschaftliche Arbeiten
- Selbstständige Projektarbeit unter Anleitung
- Wissenschaftliches Schreiben
- Präsentationstechniken
- Wissenschaftlicher Vortrag
- Diskussionsführung

Grundlegende Literatur:
- Aktuelle Literatur zum Thema der Bachelorarbeit
- Abacus communications, The language of presentations, CDROM Lehr- und Trainingsmaterial
- Alley, The Craft of Scientific Presentation, Springer
- Day, How to write & publish a scientific paper. Cambridge University Press.

Empfohlene Vorkenntnisse:
Kernmodul des jeweiligen Bachelorstudiengangs

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
- Physik: Abgeschlossenes Modul Mathematik für Physiker und bestandene Modulübergreifende Prüfungen Experimentalphysik und Theoretische Physik I
- Meteorologie: mindestens 100 LP aus den Kernmodulen des Bachelorstudiengangs

Verwendbarkeit:
- Bachelorstudiengang Physik (Modul Bachelorprojekt)
- Bachelorstudiengang Meteorologie (Modul Bachelorprojekt)

<table>
<thead>
<tr>
<th>Forschungspraktikum</th>
<th>9031</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik und Meteorologie</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Praktikum Forschungspraktikum Seminar Arbeitsgruppenseminar</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Seminarleistung (Nur für MA Technische Physik)</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td>15</td>
</tr>
<tr>
<td>Präsenz- und Selbststudium (h):</td>
<td>450</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden sind in der Lage, sich in die Messmethoden oder theoretischen Konzepte eines Forschungsgebietes einzuarbeiten. Sie können sich einen Überblick über die Fachliteratur zu einem Forschungsprojekt verschaffen. Die Studierenden sind befähigt in einem (international zusammengesetzten) Team zu arbeiten und problemlos auf Deutsch und Englisch zu kommunizieren.

Inhalte:
- Literaturrecherche
- Einarbeitung in theoretische Verfahren bzw. experimentelle Verfahren
- Diskussion von Problemstellungen aktueller Forschung im Arbeitsgruppenseminar

Grundlegende Literatur:
- Aktuelle Literatur zum jeweiligen Forschungsbereich
- Abacus communications, *The Language of Presentations*, CDROM Lehr- und Trainingsmaterial

Empfohlene Vorkenntnisse:
- Fortgeschrittene Vertiefungsmodule des jeweiligen Masterstudiengangs

ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung: keine

Verwendbarkeit:
- Masterstudiengang Physik (Module der Forschungsphase)
- Masterstudiengang Technische Physik (Module der Forschungsphase)
- Masterstudiengang Meteorologie (Module der Forschungsphase)
Projektplanung

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Winter- und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Projekt Projektplanung für die Masterarbeit Seminar Arbeitsgruppenseminar</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Studienleistung: Praktikumsbericht (Nur für MA Technische Physik)</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS): 15</td>
<td>Präsenz- und Selbststudium (h): 450</td>
</tr>
</tbody>
</table>

Kompetenzziele:
Die Studierenden haben sich soziale Kompetenzen angeeignet, die sie befähigen, sich in ein Forschungs- oder Entwicklungsteam einzulagern. Sie können selbstständig wissenschaftlich arbeiten und komplexe Projekte planen. Die Studierenden können eigenständig recherchieren und sich einen Überblick über die z.T. englischsprachige Fachliteratur zu einem Forschungsprojekt verschaffen.

Inhalte:
- Definition einer wissenschaftlichen Problemstellung
- Methoden des Projektmanagements
- Erstellung, Vorstellung und Diskussion eines Projektplans

Grundlegende Literatur:
- Little, (Hrsg.), *Management der Hochleistungsorganisation*, Gabler Verlag, Wiesbaden, 1990

Empfohlene Vorkenntnisse:
- fortgeschrittene Vertiefungsmodule des jeweiligen Masterstudiengangs

ggfs. Eingangsvoraussetzungen und ggfs. Teilnehmerzahlbegrenzung:
keine

Verwendbarkeit:
- Masterstudiengang Meteorologien (Module der Forschungsphase)
- Masterstudiengang Physik (Module der Forschungsphase)
- Masterstudiengang Technische Physik (Module der Forschungsphase)
<table>
<thead>
<tr>
<th>Modulübergreifende Prüfung Forschungspraktikum/Projektplanung</th>
<th>9033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semesterlage</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td>Prüfungsleistung: Seminar</td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: Seminar</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>geht nicht in die Masternote ein</td>
</tr>
<tr>
<td>Gewicht</td>
<td>0</td>
</tr>
<tr>
<td>Kompetenzziele:</td>
<td>Die Studierenden können sich einen Überblick über die Fachliteratur zu einem Forschungsprojekt verschaffen. Sie sind in der Lage einen wissenschaftlichen Vortrag zu halten und ihr eigenes Forschungsprojekt im Kontext des aktuellen Stands der Wissenschaft darzustellen.</td>
</tr>
<tr>
<td>Inhalte:</td>
<td>Projektplanung, Forschungspraktikum</td>
</tr>
<tr>
<td>ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:</td>
<td>keine</td>
</tr>
<tr>
<td>Verwendbarkeit:</td>
<td>• Masterstudiengang Physik (Module der Forschungsphase)</td>
</tr>
<tr>
<td></td>
<td>• Masterstudiengang Technische Physik (Module der Forschungsphase)</td>
</tr>
<tr>
<td></td>
<td>• Masterstudiengang Meteorologie (Module der Forschungsphase)</td>
</tr>
</tbody>
</table>
Masterarbeit

<table>
<thead>
<tr>
<th>Semesterlage</th>
<th>Winter- und Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Institute der Physik</td>
</tr>
<tr>
<td>Lehrveranstaltungen (SWS)</td>
<td></td>
</tr>
<tr>
<td>Leistungsnachweis zum Erwerb der LP</td>
<td>Prüfungsleistung: Masterarbeit</td>
</tr>
<tr>
<td>Notenzusammensetzung</td>
<td>Note der Masterarbeit</td>
</tr>
<tr>
<td>Leistungspunkte (ECTS):</td>
<td></td>
</tr>
<tr>
<td>Gewicht Physik:</td>
<td>30</td>
</tr>
<tr>
<td>Gewicht Meteorologie:</td>
<td>5</td>
</tr>
<tr>
<td>Präsenz- Selbststudium (h):</td>
<td>400</td>
</tr>
</tbody>
</table>

Kompetenzziele:

Inhalte:
- Selbstständige Bearbeitung einer aktuellen wissenschaftlichen Problemstellung in einem internationalen Forschungsumfeld
- Schriftliche Dokumentation und mündliche Präsentation des Forschungsprojekts und der Ergebnisse
- Wissenschaftliche Diskussion der Ergebnisse

Grundlegende Literatur:
- Aktuelle Literatur zur jeweiligen wissenschaftlichen Problemstellung
- Day, How to write & publish a scientific paper. Cambridge University Press

Empfohlene Vorkenntnisse:
- ggf. Eingangsvoraussetzungen und ggf. Teilnehmerzahlbegrenzung:
 - Physik: Projektplanung und mind. 40 Leistungspunkte aus dem Masterstudiengang
 - Technische Physik: Projektplanung
 - Meteorologie: Modulübergreifende Prüfung Forschungspraktikum/ Projektplanung

Verwendbarkeit:
- Masterstudiengang Physik
- Masterstudiengang Technische Physik
- Masterstudiengang Meteorologie

Prüfungsverfahren:
Lehrveranstaltungskatalog

Lehrveranstaltungen der Physik

Institut für Theoretische Physik

Fortgeschrittene Quantentheorie .. 80
Seminar zu Fortgeschrittene Quantentheorie ... 81
Computerphysik .. 83
Theoretische Festkörperphysik ... 84
Statistische Feldtheorie .. 85
Seminar zur Theorie der kondensierten Materie .. 86
Fortgeschrittene Computerphysik ... 87
Aktuelle Probleme der Theorie der kondensierten Materie ... 88
Theorie der fundamentalen Wechselwirkungen ... 89
Seminar zu Theorie der fundamentalen Wechselwirkungen ... 90
Ergänzungen zur klassischen Physik .. 91
Einführung in die Teilchenphysik ... 92

Institut für Festkörperphysik

Festkörperphysik in niedrigen Dimensionen .. 93
Laborpraktikum zu Festkörperphysik in niedrigen Dimensionen .. 93
Oberflächenphysik .. 94
Vom Atom zum Festkörper .. 95
Seminar zu Vom Atom zum Festkörper ... 96
Halbleiterphysik .. 97
Halbleitermeßtechnik in der Photovoltaik ... 98
Rastersondentechnik .. 99
Molekulare Elektronik .. 100
Methoden der Oberflächenanalytik .. 101
Laborpraktikum Methoden der Oberflächenanalytik .. 102
Physik der Nanostrukturen ... 103
Optische Spektroskopie von Festkörpern .. 104
Quantenstrukturbauelemente .. 105
Physik der Solarzelle .. 106
Laborpraktikum Festkörperphysik .. 108
Seminar Aktuelle Forschungsthemen der Festkörperphysik .. 109
Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern .. 110
Physik in Nanostrukturen ... 111

Institut für Quantenoptik

Nichtlineare Optik ... 112
Photonik .. 113
Seminar zu Photonik ... 114
Atomoptik .. 115
Laborpraktikum Optik .. 116
Festkörperlaser .. 117
Optische Schichten .. 118

Institut für Gravitationsphysik

Data Analysis .. 119
Neutron Stars and Black Holes .. 120
Seminar Gravitationswellen ... 121
Seminar Gravitationsphysik .. 122
Laserinterferometrie ... 123
Laborpraktikum Laserinterferometrie 124
Laserstabilisierung und Kontrolle optischer Experimente 125
Laborpraktikum Cluster Computing 126
Nichtklassisches Licht .. 127
Nichtklassische Laserinterferometrie 128
Elektronische Metrologie im Optiklabor 129

Institut für Radioökologie und Strahlenschutz

Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie 130
Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs 131
Radioaktivität in der Umwelt und Strahlengefährdung des Menschen ... 132
Strahlenschutz und Radioökologie .. 133
Nukleare Analysemethoden in der Radioanalytik 134
Radiochemie & Radioanalytik .. 136
Einführung in die Massenspektrometrie 137
Seminar/Praktikum Strahlenschutz und Radioökologie 138
Fachkunde im Strahlenschutz ... 139

Lehrveranstaltungen der Meteorologie

Numerische Wettervorhersage .. 140
Programmierpraktikum zur Numerischen Wettervorhersage 141
Schadstoffausbreitung in der Atmosphäre 142
Turbulenz II ... 143
Atmosphärische Konvektion .. 144
Programmierpraktikum zur Simulation der atmosphärischen Grenzschicht ... 145
Simulation turbulenter Strömungen mit LES-Modellen 146
Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen 147
Agrarmeteorologie ... 148
Lokalklima .. 149
Fernerkundung I ... 150
Meteorologische Exkursion II ... 153
Externes Praktikum Inland ... 154
Externes Praktikum Ausland .. 155
Tabelle Zuordnung der Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulname/ Veranstaltung</th>
<th>Bachelor Physik</th>
<th>Bachelor Meteorologie</th>
<th>Master Physik</th>
<th>Master Technische Physik</th>
<th>Master Meteorologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderne Aspekte der Physik</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahlimodal Meteorologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen moderner Physik Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen der Photonik Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen der Nanoelektronik Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen moderner Meteorologie A Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen moderner Meteorologie B Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Themen moderner Meteorologie C Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fortgeschrittene Quantentheorie: X
- Seminar zu Fortgeschrittene Quantentheorie: X
- Computerphysik: X
- Theoretische Festkörperphysik: X
- Statistische Feldtheorie: X
- Seminar zur Theorie der kondensierten Materie: X
- Fortgeschrittene Computerphysik: X
- Aktuelle Probleme der Theorie der kondensierten Materie: X
- Theorie der fundamentalen Wechselwirkungen: X
- Seminar zu Theorie der fundamentalen Wechselwirkungen: X
- Ergänzungen zur klassischen Physik: X
- Festkörperphysik in niedrigen Dimensionen: X
- Laborpraktikum Festkörperphysik in niedrigen Dimensionen: X
- Oberflächenphysik: X
- Vom Atom zum Festkörper: X
<table>
<thead>
<tr>
<th>Modulname/ Veranstaltung</th>
<th>Bachelor Physik</th>
<th>Bachelor Meteorologie</th>
<th>Master Physik</th>
<th>Master Technische Physik</th>
<th>Master Meteorologie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderne Aspekte der Physik</td>
<td>Wah lm d Modul Meteorologie</td>
<td>Ausgewählte Themen moderner Physik</td>
<td>Ausgewählte Themen der Photonik</td>
<td>Ausgewählte Themen moderner Meteorologie</td>
</tr>
<tr>
<td>Seminar zu Vom Atom zum Festkörper</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Halbleiterphysik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Halbletermess-technik in der Photovoltaik</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rastersonden-technik</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Molekulare Elektronik</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Methoden der Oberflächen-analytik</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Methoden der Oberflächen-analytik</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Spintronik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Optische Spektroskopie von Festkörpern</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Quantenstrukturbauelemente</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Physik der Solarzelle</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum Festkörperphysik</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aktuelle Forschungs-themen der Festkörperphysik</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nichtlineare Optik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Photonik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Seminar zu Photonik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Atomoptik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum Optik</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Modulname / Veranstaltung</td>
<td>Bachelor Physik</td>
<td>Bachelor Meteorologie</td>
<td>Master Physik</td>
<td>Master Technische Physik</td>
<td>Master Meteorologie</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Neutron Stars and Black Holes</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar Gravitationswellen</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar Gravitationsphysik</td>
<td></td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laserinterferometrie</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum Laserinterferometrie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laserstabilisierung und Kontrolle optischer Experimente</td>
<td>X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nichtklassisches Licht</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nichtklassische Laserinterferometrie</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioaktivität in der Umwelt und Strahlengefährdung des Menschen</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strahlenschutz und Radioökologie</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laborpraktikum Strahlenschutz</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nukleare Analysemethoden</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernphysikalische Anwendungen</td>
<td>X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulname/Veranstaltung</td>
<td>Bachelor Physik</td>
<td>Bachelor Meteorologie</td>
<td>Master Physik</td>
<td>Master Technische Physik</td>
<td>Master Meteorologie</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Moderner Aspekt der Physik</td>
<td>Modul Modul Meteorologie</td>
<td>Wahlschule</td>
<td>Themen moderner Physik Seminar</td>
<td>Themen moderner Nanoelektronik Seminar</td>
<td>Themen moderner Meteorologie A Seminar</td>
</tr>
<tr>
<td>Moderner Aspekt der Meteorologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Themen moderner Meteorologie B Seminar</td>
</tr>
<tr>
<td>Moderner Aspekt der Meteorologie A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Themen moderner Meteorologie C Seminar</td>
</tr>
<tr>
<td>Moderner Aspekt der Meteorologie B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderner Aspekt der Meteorologie C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sem./Praktikum Strahlenschutz und Radioökologie</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einführung in die Teilchenphysik</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronische Metrologie im Optiklabor</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Lasermedizin und Biophotonik</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festkörperlaser</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optische Schichten</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physik in Nanostrukturen</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachkunde im Strahlenschutz</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerische Wettwehrsage</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Programmier-praktikum zur Numerischen Wettwehrsage</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Schadstoffausbreitung in der Atmosphäre</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Turbulenz II</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Atmosphärische Konvektion</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Programmier-praktikum zur Atmosphärischen Konvektion</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Simulation turbulenter Strömungen mit LES-Modellen</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Modulname/Veranstaltung</td>
<td>Bachelor Physik</td>
<td>Bachelor Meteorologie</td>
<td>Master Physik</td>
<td>Master Technische Physik</td>
<td>Master Meteorologie</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Moderne Aspekte der Physik</td>
<td>Wahlimodul Meteorologie</td>
<td>Ausgewählte Themen moderner Physik Seminar</td>
<td>Ausgewählte Themen der Photonik Seminar</td>
<td>Ausgewählte Themen moderner Meteorologie A B C</td>
</tr>
<tr>
<td>Agrar-meteorologie</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lokalklimate</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar zur fortgeschrittenen Meteorologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteorologische Exkursion II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externes Praktikum Inland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externes Praktikum Ausland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Leibniz Universität Hannover
Lehrveranstaltungen der Physik

Fortgeschrittene Quantentheorie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Vielteilchensysteme: Identische Teilchen, Fock-Raum, Feldquantisierung
- Offene Quantensysteme: Dichtematrix, Messprozess, Bell'sche Ungleichung
- Information und Thermodynamik: Zustandssummen, Entropie, thermodynamisches Gleichgewicht
- Semiklassische Näherung: Bohr-Sommerfeld, Tunneleffekt, Pfadintegral
- Relativistische Quantenmechanik: Raum-Zeit-Symmetrien, Dirac-Gleichung
- Streutheorie

Grundlegende Literatur:
- W. Greiner and J. Reinhardt, *Theoretische Physik 7 (Quantenelektrodynamik) und 7a (Feldquantisierung)*, Springer
- J.J. Sakurai, *Modern Quantum Mechanics*, Addison Wesley
- F. Schwabl, *Quantenmechanik für Fortgeschrittene*, Springer

Empfohlene Vorkenntnisse:
- Mathematik für Physiker

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Seminar zu Fortgeschrittene Quantentheorie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
Nach Absprache mit den Dozenten. Das Seminar muss in Zusammenhang mit der Vorlesung Fortgeschrittene Quantentheorie belegt werden.

Grundlegende Literatur:
- W. Greiner and J. Reinhardt, *Theoretische Physik 7 (Quantenelektrodynamik) und 7a (Feldquantisierung)*, Springer
- J.J. Sakurai, *Modern Quantum Mechanics*, Addison Wesley
- F. Schwabl, *Quantenmechanik für Fortgeschrittene*, Springer

Empfohlene Vorkenntnisse:
- Mathematik für Physiker

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
- Seminar
Einführung in die elektronische Messdatenerfassung und -verarbeitung mit LabView

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Kompetenzziele:

Die Studierenden erlernen experimentelle Methoden der computergestützten elektronischen Messdatenerfassung sowie die Weiterverarbeitung dieser Daten mit der grafischen Programmierumgebung LabView, die vielfach in Forschung und Industrie eingesetzt wird. Sie kennen die physikalischen Funktionsprinzipien der verwendeten Sensoren und sind in der Lage, damit messtechnische Aufgabenstellungen selbständig zu lösen, die Daten mit dem Computer weiterzuverarbeiten und die Unsicherheit der Ergebnisse zu analysieren.

Inhalt:
- Grundlagen der Programmierung in LabView
- Grundlagen der elektronischen Messdatenerfassung mit LabView
- Physikalische Grundlagen der Funktionsweise ausgewählter Sensoren
- Grundlagen der systematischen Betrachtung von Messunsicherheiten
- Begleitende Versuche zu den Vorlesungsinhalten

Grundlegende Literatur:
- W. Georgi, P. Hohl, Einführung in LabView, Hanser-Verlag
- W. Demtröder, Experimentalphysik 1: Mechanik und Wärme, Springer Verlag
- W. Demtröder, Experimentalphysik 2: Elektrizität und Optik, Springer Verlag
- E. Hering, K. Bressler, J. Gutekunst, Elektronik für Ingenieure und Naturwissenschaftler, Springer Verlag

Empfohlene Vorkenntnisse:
- Vorlesungen Mechanik und Relativität sowie Elektrizität

Eingangsvoraussetzungen/Teilnehmerbegrenzung:
20 TeilnehmerInnen, Anmeldung über Stud.IP erbeten

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
- Elektronik und Messtechnik
- Naturwissenschaftlich-Technischer Wahlbereich Meteorologie
Computerphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+2</td>
<td>6</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- oder Sommersemester

Inhalt:
- Grundlegende numerische Methoden (Differentiation, Integration, Interpolation, Lösung einer nicht-linearen Gleichung, Systeme linearer algebraischer Gleichungen, Monte Carlo-Methoden)
- Numerische Lösung gebräuchlicher Probleme der Physik (Differentialgleichungen, Eigenwertprobleme, Optimierung, Integration und Summen vieler Variablen)
- Anwendungen aus der Mechanik, Elektrodynamik und Thermodynamik
- Datenanalyse (statistische Analyse, Ausgleichsrechnung, Extrapolation, spektrale Analyse)
- Visualisierung (graphische Darstellung von Daten)
- Einführung in die Simulation physikalischer Systeme (dynamische Systeme, einfache Molekulardynamik)
- Computer-Algebra

Grundlegende Literatur:

- Wolfgang Kinzel und Georg Reents, „Physik per Computer“, Spektrum Akademischer Verlag
- S.E. Koonin and D.C. Meredith, „Computational Physics“, Addison-Wesley
- Tao Pang, „An Introduction to Computational Physics“, Cambridge University Press
- S. Brandt, „Datenanalyse“, Spektrum Akademischer Verlag
- V. Blobel und E. Lohrmann, „Statistische und numerische Methoden der Datenanalyse“, Teubner Verlag

Empfohlene Vorkenntnisse:
- Erfahrung mit dem Computer und Grundlagen der Programmierung.
- Analysis I+II
- Theoretische Elektrodynamik
- Analytische Mechanik und Spezielle Relativitätstheorie
- Einführung in Quantentheorie

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Naturwissenschaftlich-technischer Wahlbereich
- Ausgewählte Themen moderner Physik
Theoretische Festkörperphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter – oder Sommersemester (im Wechsel mit Statistischer Feldtheorie)

Inhalt:
- Transportphänomene
- Elektronische Korrelationen
- niedrigdimensionale Systeme
- Magnetismus
- Supraleitung
- Unordnung und Störstellen
- Mesoskopische Systeme

Grundlegende Literatur:
- C. Kittel: *Quantum Theory of Solids*, Wiley
- W. Nolting: *Quantentheorie des Magnetismus, Band I + II*, Teubner Verlag

Empfohlene Vorkenntnisse:
- Fortgeschrittene Quantentheorie
- Quantenfeldtheorie

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Statistische Feldtheorie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter – oder Sommersemester (im Wechsel mit Theoretischer Festkörperphysik)

Inhalt:
- Zustandssumme als Pfadintegral
- kritische Phänomene
- kondensierte Materie in zwei Dimensionen
- Quantenspinketten
- Nichtgleichgewichtsphänomene

Grundlegende Literatur:
- D. J. Amit & V. Martin-Mayor: *Field theory, the renormalization, group, and critical phenomena* (World Scientific 2005)

Empfohlene Vorkenntnisse:
- Fortgeschrittene Quantentheorie
- Quantenfeldtheorie

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Seminar zur Theorie der kondensierten Materie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter – oder Sommersemester

Inhalt:
Nach Absprache mit den Dozenten. Das Seminar muss in Zusammenhang mit der Vorlesung Theoretische Festkörperphysik oder Statistische Feldtheorie belegt werden.

Grundlegende Literatur:

- Siehe Theoretische Festkörperphysik und Statistische Feldtheorie sowie aktuelle Forschungspublikationen

Empfohlene Vorkenntnisse:
- Fortgeschrittene Quantentheorie
- Quantenfeldtheorie

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Seminar
Fortgeschrittene Computerphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+2</td>
<td>8</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter – oder Sommersemester

Inhalt:
- Exakte Diagonalisierung
- Monte Carlo Simulationen
- numerische Renormierungsgruppe
- Dichtefunktionaltheorie
- Moleküldynamik
- Quantendynamik

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Einführung in die Quantentheorie
- Statistische Physik
- Computerphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Moderne Aspekte der Physik
Aktuelle Probleme der Theorie der kondensierten Materie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- oder Sommersemester

Inhalt:

Aktuelles Thema nach Wahl der Dozentin oder des Dozenten, z.B.
- Theorie des Magnetismus
- Theorie der Supraleitung
- Theorie des Quanten Hall Effekt
- Theorie stark korrelierter Elektronen
- Integrable Quantensysteme
- Systeme außerhalb des Gleichgewichts

Grundlegende Literatur:

wird vom Dozenten angegeben

Empfohlene Vorkenntnisse:

- Fortgeschrittene Quantentheorie
- Fortgeschrittene Festkörperphysik

Modulzugehörigkeit:

- Ausgewählte Themen moderner Physik
Theorie der fundamentalen Wechselwirkungen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- oder Sommersemester

Inhalt:
Thema nach Wahl der Dozentin oder des Dozenten, z.B.
- String-Theorie
- Supersymmetrie
- Allgemeine Relativitätstheorie
- Eichtheorie und ihre Quantisierung
- Konforme Feldtheorie

Grundlegende Literatur:
- Peskin, Schröder, *Quantum Field Theory*, Westview Press
- Green, Schwarz, Witten, *Superstring Theory*, Cambridge University Press
- und aktuelle Forschungspublikationen

Empfohlene Vorkenntnisse:
- Fortgeschrittene Quantentheorie

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Seminar zu Theorie der fundamentalen Wechselwirkungen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- oder Sommersemester

Inhalt:

Grundlegende Literatur:
- Peskin, Schröder, *Quantum Field Theory*, Westview Press
- Green, Schwarz, Witten, *Superstring Theory*, Cambridge University Press
- und aktuelle Forschungspublikationen

Empfohlene Vorkenntnisse:
- Fortgeschrittene Quantentheorie

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Seminar
Ergänzungen zur klassischen Physik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter – oder Sommersemester

Inhalt:
Ausgewählte Bereiche der klassischen Physik nach Wahl der Dozentin oder des Dozenten, z.B.

- **Eichtheorien:** Parallelverschiebung, kovariante Ableitung, Feldstärken, Holonomie-Gruppe, Bianchi-Identitäten, Wirkungsprinzip, Noetheridentitäten, Algebraisches Poincaré-Lemma, Standard-Modell der fundamentalen Wechselwirkungen, Monopole, spontane Symmetriebrechung, BRS-Symmetrie, Anomalien
- **Integrable und chaotische Bewegung:** Hamiltonsche Bewegungsgleichungen, kanonische Transformationen, Poincarés Integralinvarianten, Wirkungs-Winkel-Variable, Störungstheorie, Kolmogorov-Arnol’d-Moser Theorem, Poincarés Wiederkehrabbildung, Birkhoffs Fixpunktsatz, Selbstähnlicher Hamiltonscher Fluss

Grundlegende Literatur:

- J. Moser, *Stable and Random Motion in Dynamical Systems*, Princeton University Press

Empfohlene Vorkenntnisse:

- Analytische Mechanik und Spezielle Relativitätstheorie

Modulzugehörigkeit:

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Einführung in die Teilchenphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Theoretische Physik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Fundamentale Teilchen und ihre Wechselwirkungen
- Symmetrien und Erhaltungssätze
- Hadronen, Quarks, Partonen
- QCD
- elektromagnetische und schwache Wechselwirkungen und ihre Vereinigung
- Standardmodell der Teilchenphysik
- Beschleuniger und Detektoren
- Neutrinophysik
- Offene Fragen und Zukunftsprojekte der Teilchenphysik

Grundlegende Literatur:

- F. Halzen und A.D. Martin, *Quarks and Leptons*, Wiley
- B.R. Martin and G. Shaw, *Particle Physics*, Wiley
- E. Lohrmann, *Hochenergiephysik*, Teubner Verlag
- C. Berger, *Elementarteilchenphysik*, Springer

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Festkörperphysik in niedrigen Dimensionen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit:
Sommersemester

Inhalt:
- Herstellung von Strukturen niedriger Dimension, Epitaxie
- Elektronische Eigenschaften in 0 bis 2 Dimensionen
- Auswirkungen der Korrelation von Elektronen
- Resonante Bauelemente
- Magnetische Eigenschaften
- Eindimensionale Ketten: Dispersion, Instabilitäten, Defekte
- Solitonen
- Supraleitung in stark anisotropen Systemen
- Ladungs- und Spindichtewellen

Grundlegende Literatur:
- Roth, Carroll, *One-dimensional metals*, VCH
- I. Markov, *Crystal growth for beginners*, World Scientific

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Oberflächenphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Struktur von Festkörperoberflächen und zugehörige Messmethoden
- Elektronische Eigenschaften von Grenzflächen und zugehörige Messmethoden
- Bindung von Atomen und Molekülen an Grenzflächen
- einfache Reaktionskinetik
- Strukturierung und Selbstorganisation
- Defekte und deren physikalische Auswirkungen

Grundlegende Literatur:
- M. Henzler, M. Göpel, *Oberflächenphysik des Festkörpers*, Teubner
- Ph. Hoffmann, Wiley

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik
- Fortgeschrittene Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Vom Atom zum Festkörper

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Herstellung von Strukturen niedriger Dimension, Epitaxie
- Elektronische Eigenschaften in 0 bis 2 Dimensionen
- Auswirkungen der Korrelation von Elektronen
- Resonante Bauelemente
- Magnetische Eigenschaften
- Eindimensionale Ketten: Dispersion, Instabilitäten, Defekte
- Solitonen
- Supraleitung in stark anisotropen Systemen
- Ladungs- und Spindichtewellen

Grundlegende Literatur:
- Roth, Carroll, *One-dimensional metals*, VCH
- Bovensiepen, Wolf

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik
<table>
<thead>
<tr>
<th>Seminar zu Vom Atom zum Festkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
Nach Absprache mit den Dozenten. Das Seminar muss in Zusammenhang mit der Vorlesung Vom Atom zum Festkörper belegt werden.

Grundlegende Literatur:
- Roth, Carroll, *One-dimensional metals*, VCH
- I. Markov, *Crystal growth for beginners*, World Scientific

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Seminar
<table>
<thead>
<tr>
<th>Halbleiterphysik</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2+1</td>
</tr>
<tr>
<td>Regelmäßigkeit: Wintersemester</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>• Energiebänder</td>
</tr>
<tr>
<td>• Elektrischer Transport</td>
</tr>
<tr>
<td>• Defekte</td>
</tr>
<tr>
<td>• Optische Eigenschaften</td>
</tr>
<tr>
<td>• Quantenconfinement</td>
</tr>
<tr>
<td>• p-n-Übergänge, bipolare Transistoren</td>
</tr>
<tr>
<td>• Feldeffekttransistoren</td>
</tr>
<tr>
<td>• Herstellungstechniken</td>
</tr>
<tr>
<td>Grundlegende Literatur:</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse:</td>
</tr>
<tr>
<td>• Einführung in die Festkörperphysik</td>
</tr>
<tr>
<td>Modulzugehörigkeit:</td>
</tr>
<tr>
<td>• Ausgewählte Themen moderner Physik</td>
</tr>
<tr>
<td>• Ausgewählte Themen der Nanoelektronik</td>
</tr>
<tr>
<td>Halbleitermesstechnik in der Photovoltaik</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt: In der Vorlesung wird der Herstellungsprozess einer kristallinen Siliziumsolarzelle vom Siliziumblock bis zur Solarzelle betrachtet. Die jeweiligen Analyseverfahren zur Beurteilung der einzelnen Prozesse werden vorgestellt und erklärt. Dieses sind insbesondere Analyseverfahren zur:

- Material Charakterisierung: Leitfähigkeit, Ladungsträgerdichte, Ladungsträgerlebensdauer (Photolumineszenz, Photoleitfähigkeit, Thermografie), Defekte (Deep Level Transient Spectroscopy, Ladungsträgerlebensdauerpektroskopie, Infrarot-Spektroskopie), Kristallorientierung (Elektron Back Scattering Diffraction)
- Prozess Charakterisierung: Dotierprofile (Electrochemical Capacitance Voltage Profiling), Textur (Rasterelektronenmikroskopie, Reflexion), Ladungsträgerlebensdauer (Photolumineszenz, Photoleitfähigkeit, Thermografie), Schichtdicke und Brechungsindex (Ellipsometrie, Infrarot-Spektroskopie)
- Solarzellen Charakterisierung: Strom-Spannungs-Kennlinie, Quanteneffizienz, Reflexion, Shuntanalyse (Thermografie), Serienwiderstand (Transmission Line Method, Photolumineszenz)

Grundlegende Literatur:

- Bergmann, Schaefer, Lehrbuch der Experimentalphysik Bd. 6: Festkörper, de Gruyter (1992)

Empfohlene Vorkenntnisse:

- Einführung in die Festkörperphysik
- Halbleiterphysik
- Physik der Solarzelle

Modulzugehörigkeit:

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik
<table>
<thead>
<tr>
<th>Rastersondentechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:
- Rastertunnelmikroskopie
- Zustandsdichten und Transmissionswahrscheinlichkeiten
- Rastertunnelspektroskopie
- Kraftmikroskopie
- auftretende Kräfte an Oberflächen
- Detektion lokaler elektrischer und magnetischer Felder,
- Reibungsbilder
- Rasterelektronenmikroskopie

Grundlegende Literatur:

- E. Meyer; H. J. Hug, R. Bennewitz, *Scanning probe microscopy : the lab on a Tipp*, Springer

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik
Molekulare Elektronik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Aufbau von Molekülen und elektronische Struktur
- Molekulare Kristalle
- Organische Filme, Dotierung, elektronischer Transport
- Moleküle auf Oberflächen
- Kontaktierung von Molekülen

Grundlegende Literatur:
- J. Tour, *Molecular electronics*, World scientific 2002
- Organische Festkörper, Schwoerer, Wolf, Wiley

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik
Methoden der Oberflächenanalytik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:

- Vakuumtechnik und Probenpräparation
- Methoden der chemischen Analyse:
 - XPS, UPS, AES, EELS, ISS, TDS, ESD
- Bestimmung der geometrischen Struktur:
 - STM, AFM, FIM, LEED, SEM
- Analyse der Elektronenstruktur:
 - UPS, XPS, IPES, NEXAFS

Grundlegende Literatur:

- Springer Series in Surface Science

Empfohlene Vorkenntnisse:

- Einführung in die Festkörperphysik

Modulzugehörigkeit:

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik
Laborpraktikum Methoden der Oberflächenanalytik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
Passende Versuche, z.B. mit XPS, UPS, LEED, EELS. Das Praktikum muss in Zusammenhang mit der Vorlesung Methoden der Oberflächenanalytik belegt werden.

Grundlegende Literatur:
- Springer Series in Surface Science

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Moderne Aspekte der Physik
Physik der Nanostrukturen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>5</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: nicht regelmäßig

Inhalt:
- Grundlagen Nanostrukturen
- Moderne ein- und zweidimensionale Strukturen
- Spektroskopiemethoden

Grundlegende Literatur:
- Wird in der Vorlesung bekannt gegeben

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
Optische Spektroskopie von Festkörpern

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:
- Kurzpulslaser
- Licht-Materie-Wechselwirkung
- Pump-Abfrage Techniken
- Zeitaufgelöste Photolumineszenz
- Polarisation (Jones-Matrix, Stokes-Vektor)
- Halbleiteroptik
- Physikalische Grenzen der Zeitauflösung und Messempfindlichkeit
- Rauschen als Messgröße

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderne Physik
- Ausgewählte Themen der Nanoelektronik
Quantenstrukturbauelemente

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Quanteneffekte in Halbleiterstrukturen
- Physik zweidimensionaler Elektrongase
- Quantendrähte
- Quantenpunkte
- Kohärenz- und Wechselwirkungseffekte
- Einzelektronentunneltransistor
- Quantencomputing

Grundlegende Literatur:
- C. Weisbuch, B. Vinter, *Quantum Semiconductor Structures*, Academic Pr Inc

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik
- Fortgeschrittene Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Quantenstrukturbauelemente (Pflichtbereich Master Nanotechnologie)
Physik der Solarzelle

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+2</td>
<td>6</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Halbleitergrundlagen
- Optische Eigenschaften von Halbleitern
- Transport von Elektronen und Löchern
- Mechanismen der Ladungsträger-Rekombination
- Herstellungsverfahren für Solarzellen
- Charakterisierungsmethoden für Solarzellen
- Möglichkeiten und Grenzen der Wirkungsgradverbesserung

Grundlegende Literatur:
- P. Würfel, „Physik der Solarzellen“ (Spektrum Akademischer Verlag, 2000).

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
- Wahlveranstaltung im Masterstudiengang Nanotechnologie
<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+2</td>
<td>4</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Grundlagen der Programmierung in LabView
- Grundlagen der elektronischen Messdatenerfassung mit LabView
- Physikalische Grundlagen der Funktionsweise ausgewählter Sensoren
- Grundlagen der systematischen Betrachtung von Messunsicherheiten
- Begleitende Versuche zu den Vorlesungsinhalten

Grundlegende Literatur:
- W. Georgi, P. Hohl, Einführung in LabVIEW, Hanser-Verlag
- W. Demtröder, Experimentalphysik 1: Mechanik und Wärme, Springer-Verlag
- W. Demtröder, Experimentalphysik 2: Elektrizität und Optik, Springer-Verlag
- E. Hering, K. Bressler, J. Gutekunst, Elektronik für Ingenieure und Naturwissenschaftler, Springer-Verlag

Empfohlene Vorkenntnisse:
- Vorlesungen Mechanik und Relativität sowie Elektrizität k

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
- Elektronik und Messtechnik
- Naturwissenschaftlich-Technischer Wahlbereich Meteorologie
- Ausgewählte Themen der Nanoelektronik
- Wahlveranstaltung im Masterstudiengang Nanotechnologie
Laborpraktikum Festkörperphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- und Sommersemester

Inhalt:
- Quantenhalleffekt
- Epitaxie
- Vakuumtechnik
- Bindungszustände an Oberflächen und Grenzflächen
- Beugungsverfahren mit Röntgenstrahlen und langsamen Elektronen
- Tunnelmikroskopie und -spektroskopie
- Nanostrukturierung, Elektronenstrahl Lithographie
- Elektronenmikroskopie
- Resonantes Tunneln

Grundlegende Literatur:
wird im Praktikum angegeben

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
Problemstellungen der aktuellen Forschung, z.B. aus den Themenfeldern:
- Ultradünne metallische Schichten
- Phasenübergänge in zwei Dimensionen
- Molekulare Elektronik
- Defektanalyse an Siliziumwafern
- Isolatorepitation
- Nanostrukturierte Metall/Isolator-Systeme
- Elektronenstrahl lithographie und optische Lithographie
- Strukturierung von Halbleiterbauelementen mit einem Rasterkraftmikroskop
- Resonantes Tunneln durch InAs Quantenpunkte
- Hochfrequenzexperimente im Quanten–Hall–Effekt
- Elektron-Phonon-Wechselwirkung in Quanten-Hall-Systemen
- Transportexperimente in Si/SiGe-Heterostrukturen
- Rauschen in niedrigdimensionalen Elektronensystemen
- Spinelektronik in Halbleitern
- Optik im Quanten-Hall-Regime

Grundlegende Literatur:
wird zum jeweiligen Thema benannt

Empfohlene Vorkenntnisse:
- Fortgeschrittene Festkörperphysik

Modulzugehörigkeit:
- Seminar
Thermodynamik, Kinetik und Struktur von Defekten in Halbleitern

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Festkörperphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

Grundlegende Literatur:
- Wird in der Vorlesung bekannt gegeben

Empfohlene Vorkenntnisse:
- Grundlagen der Halbleiterphysik, z.B. im Rahmen der Festkörperphysik-Vorlesungen.

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Nanoelektronik
Physik in Nanostrukturen

SWS: 2+1
Leistungspunkte: 4
Verantwortung: Institut für Festkörperphysik

Regelmäßigkeit: Sommersemester

Inhalt:
- Herstellung von Nanostrukturen durch Lithographie und Selbstorganisation
- Elektronische Struktur, Grenzflächenzustände
- Quantensize Effekte
- Transportsignaturen in mesoskopischen Systemen
- Magnetowiderstandseffekte
- Quantenhall Effekt, u.a. in Graphen
- Instabilitäten 1-dimensionaler Strukturen
- Einzelelektronen Transistoren
- Molekulare Elektronik
- Experimentelle Methoden

Grundlegende Literatur:
- Crytsal Growth for Beginners, Ivan V Markov (World Scientific)
- Mesoscopic Electronics in Solid State Nanostructure, Thomas Heinzel (Wiley)
- Surface Science: An Introduction, Philip Hofmann (kindle.edition)
- Nanoelectronics and Information Technology, Rainer Waser (Wiley)

Empfohlene Vorkenntnisse:
- Einführung in die Festkörperphysik
- Oberflächenphysik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Nichtlineare Optik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>5</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Nichtlineare optische Suszeptibilität
- Kristalloptik, Tensoroptik
- Wellengleichung mit nichtlinearen Quelltermen
- Frequenzverdopplung, Summen-, Differenzfrequenzerzeugung
- Optisch parametrischer Verstarker, Oszillator
- Phasenanpassungs-Schemata, Quasiphasenanpassung
- Elektro-optischer Effekt
- Elektro-akustischer Modulator
- Frequenzverdreifachung, Kerr-Effekt, Selbstphasenmodulation, Selbstfokussierung
- Raman-, Brillouinstreuung, Vierwellenmischung
- Nichtlineare Propagation, Solitonen

Grundlegende Literatur:
- Dmitriev, *Handbook of nonlinear crystals*, Springer
- Originalliteratur

Empfohlene Vorkenntnisse:
- Atom- und Molekülphysik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Photonik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

- Wellen in Materie
- Dielektrische Wellenleiter (planar, Glasfaser), integrierte Wellenleiter
- Photonische Kristalle
- Wellenleiter – Moden
- Nichtlineare Faseroptik
- Faser_optische Komponenten (Zirkulatoren, AWG, Fiber-Bragg-Gratings, Modulatoren)
- Faserlaser
- Laserdioden, Photodetektoren
- Optische Nachrichtentechnik (RZ, NRZ, WDM/TDM)
- Netzwerke

Grundlegende Literatur:

- Reider, *Photonik*, Springer
- Menzel, *Photonik*, Springer
- Originalliteratur

Empfohlene Vorkenntnisse:

- Kohärente Optik
- Nichtlineare Optik

Modulzugehörigkeit:

- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Seminar zu Photonik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit:
Wintersemester

Inhalt:
Nach Absprache mit den Dozenten. Das Seminar muss in Zusammenhang mit der Vorlesung Photonik belegt werden.

Grundlegende Literatur:
- Reider, *Photonik*, Springer
- Menzel, *Photonik*, Springer
- Originalliteratur

Empfohlene Vorkenntnisse:
- Kohärente Optik
- Nichtlineare Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
- Seminar
- Seminar zu Photonik (Wahlbereich Master Nanotechnologie)
Atomoptik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Atom-Licht Wechselwirkung
- Strahlungsdruckkräfte
- Atom- und Ionenfallen
- Kühlung durch Evaporation
- Bose-Einstein-Kondensation
- Ultrakalte Fermi-Gase
- Experimente mit ultrakalten und entarteten Quantengasen
- Atome in optischen periodischen Gittern
- ATOMICS und moderne Experimente zur Atomoptik

Grundlegende Literatur:
- Aktuelle Publikationen

Empfohlene Vorkenntnisse:
- Atom- und Molekülphysik
- Quantenoptik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Laborpraktikum Optik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (Praktikum)</td>
<td>6</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- und Sommersemester

Inhalt:
- Resonante Leistungsüberhöhung („Power-Recycling“)
- Interferometrische Gasdichtebestimmung
- Magnetooptische Falle
- Faserlaser
- Dielektrische Schichten für die Optik
- Sättigungsspektroskopie mit Diodenlaser
- optische Pinzette
- Ultrakurzpulslaser

Grundlegende Literatur:

wird im Praktikum angegeben

Empfohlene Vorkenntnisse:
- Kohärente Optik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Festkörperlaser

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Festkörperlasermedien
- Optische Resonatoren
- Betriebsregime von Lasern
- Diodengepumpte Festkörperlaser
- Bauformen: Faser, Stab, Scheibe
- Durchstimmbare Laser
- Single-frequency Laser
- Ultrakurzpulslaser
- Frequenzkonversion

Grundlegende Literatur (Literaturempfehlung):
- W. Koechner: Solid-State Laser Engineering
- A.E. Siegman: Lasers
- O. Svelto: Principles of Lasers

Empfohlene Vorkenntnisse:
- Veranstaltungen „Kohärente Optik“ bzw. „Nichtlineare Optik“

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Optische Schichten

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 1</td>
<td>4</td>
<td>Institut für Quantenoptik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit:
Wintersemester

Inhalt:
- Bedeutung, Funktionsprinzip und Anwendungsbereiche optischer Schichten, gegenwärtiges Qualitätsniveau von Schichtsystemen für die Lasertechnik
- Theoretische Grundlagen (Sammlung bekannter Formeln und Phänomene, Berechnung von Schichtsystemen)
- Herstellung optischer Komponenten (Substrate, Beschichtungsmaterialien, Beschichtungsprozesse, Kontrolle von Beschichtungsvorgängen)
- Optikcharakterisierung (Messungen des Übertragungsverhaltens: Verluste: Totale Streuung, optische Absorption, Zerstörschwellen optische Laserkomponenten, nichtoptische Eigenschaften)

Grundlegende Literatur (Literaturempfehlung):
- Wird in der Vorlesung bekannt gegeben, zur Einführung in das Thema:

Empfohlene Vorkenntnisse:
- Veranstaltungen „Kohärente Optik“ bzw. „Nichtlineare Optik“

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Data Analysis

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Detektoren (Interferometer und „resonant mass“-Detektoren)
- Datenanalyse
- Templates
- Vetos

Grundlegende Literatur:
wird in der Vorlesung bekannt gegeben.

Empfohlene Vorkenntnisse:
- Grundlagen der Speziellen Relativitätstheorie
- Kohärente Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Neutron Stars and Black Holes

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Quellen und Ausbreitung von Gravitationswellen
- Neutronensterne und Schwarze Löcher

Grundlegende Literatur:
wird in der Vorlesung bekannt gegeben.

Empfohlene Vorkenntnisse:
- Grundlagen der Speziellen Relativitätstheorie
- Kohärente Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Seminar Gravitationswellen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit:
Sommersemester

Inhalt:
Nach Absprache mit den Dozenten

Grundlegende Literatur:
wird in den Vorlesungen und dem Seminar bekannt gegeben.

Empfohlene Vorkenntnisse:
- Grundlagen der Speziellen Relativitätstheorie
- Kohärente Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Seminar Gravitationsphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester und Wintersemester

Inhalt:
- Allgemeine Relativitätstheorie
- Quellen von Gravitationswellen
- Gravitationswellendetektoren
- Astrophysik und Kosmologie

Grundlegende Literatur:
wird im Seminar bekannt gegeben.

Empfohlene Vorkenntnisse:
- Gravitationsphysik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Seminar
Laserinterferometrie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester oder Wintersemester (unregelmäßig)

Inhalt:
- Michelson-, Mach-Zehnder- und Fary-Perot Interferometer,
- thermisches Rauschen,...
- Mechanische Güten von aufgehängten Optiken
- Michelson-, Mach-Zehnder- und Fary-Perot Interferometer
- Anwendungen zur Messung von Gravitationswellen und des Erdschwerefeldes
- Beschreibung Gauss'scher Strahlen und höherer Moden
- Transformation Gauss'scher Strahlen
- Auslesemethode: interne, externe und Schnuppmodulation; Pound-Drever-Hall Verfahren
- Polarisation
- Transferfunktionen und Regelkreise

Grundlegende Literatur:
- Siegman: *Lasers*
- Yariv: *Quantum Electronics*

Empfohlene Vorkenntnisse:
Optik, Komplexe lineare Algebra

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Laborpraktikum Laserinterferometrie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester oder Wintersemester (unregelmäßig)

Inhalt:
- Michelson-, Mach-Zehnder-, Sagnac-, Polarisationsinterferometer,
- “Power-u. Signalrecycling”, “Resonant Sideband Extraction”, „Delaylines“
- Modulationsfelder, Schnuppmodulation, externe Modulation
- Homodyndetektion
- Spektrale Rauschdichte
- Interferometerrauschen und Empfindlichkeit (Quanten-, thermisches Rauschen, ...)
- Mechanische Güten von aufgehängten Optiken

Grundlegende Literatur:

- Originalliteratur

Empfohlene Vorkenntnisse:
- Kohärente Optik
- Nichtlineare Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Laserstabilisierung und Kontrolle optischer Experimente

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester / Wintersemester (unregelmäßig)

Inhalt:
- Laser und die Ursache von Leistungs-, Frequenz- und Strahlagefluktuationen
- Grundlagen der Regelungstechnik
- Längenkontrolle von Interferometern und optischen Resonatoren
- Detektion von Frequenzfluktuationen und deren Unterdrückung
- Detektion von Leistungsfluktuationen und deren Unterdrückung
- Strahlagekontrolle

Grundlegende Literatur:
- Siegman, *Lasers*, University Science Books
- Yarif, *Optical Elektronics in Modern Communications*, Oxford University Press
- Abramovici, *Chapsky, Feedback Control Systems*

Empfohlene Vorkenntnisse:
- Kohärente Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
<table>
<thead>
<tr>
<th>Laborpraktikum Cluster Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester und Wintersemester

Inhalt:
- basics of matched filtering search method
- template banks and different search algorithms
- mismatch statistic and roc curves
- handle cluster resources using HTCondor
- computation time versus sensitivity of the analysis

Grundlegende Literatur:

![Wird im Praktikum angegeben](image)

Empfohlene Vorkenntnisse:
- Erfahrung mit Linux

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Nichtklassisches Licht

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester, (unregelmäßig)

Inhalt:
- Klassische und nichtklassische Zustände des Licht
- Kriterien für „Nichtklassizität“
- Detektion und Erzeugung von Fock-Zuständen
- Detektion und Erzeugung von gequetschtem Licht
- Quantenzustandstomographie
- EPR-verschränktes (zwei-Moden gequetschtes) Licht
- Optischer Test der Nichtlokalität

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Kohärente Optik
- Quantenoptik
- Nichtlineare Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Nichtklassische Laserinterferometrie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester (unregelmäßig)

Inhalt:
- Schrotrauschen und Strahlungsdruckrauschen im Interferometer
- Quadraturoperatoren und „Input-output“-Relationen von Interferometern
- Das Standard Quantenlimit der Positions messung
- „Quantum-Nondemolition“ Techniken
- Interferometer mit gequetschtem Licht und anderen nichtklassischen Zuständen des Lichts
- Opto-mechanische Kopplung und optische Federn
- Quantenzustände mechanischer Oszillatoren
- Kühlung mechanischer Oszillatoren in ihren quantenmechanischen Grundzustand
- Verschränkung von Spiegeln und Licht

Grundlegende Literatur:
- Originalliteratur

Empfohlene Vorkenntnisse:
- Kohärente Optik
- Nichtlineare Optik
- Nichtklassisches Licht
- Quantenoptik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
- Ausgewählte Themen der Photonik
Elektronische Metrologie im Optiklabor

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Gravitationsphysik</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester oder Wintersemester (unregelmäßig)

Inhalt:
- Elektronik-Grundlagen: Kirchhoffsche Regeln, Impedanz, Phasorendiagramme
- Operationsverstärker: Funktionsweise und Grundschaltungen
- Schwingkreise und Filter (aktiv / passiv)
- Spectrum Analyser und Network Analyser
- Messung und Interpretation von Transferfunktionen
- Grundlagen der Regelungstechnik
- Photodetektion
- Sensoren und Aktuatoren in optischen Experimenten
- Rauschmessungen

Grundlegende Literatur:
- Yariv, *Quantum Electronics*, Wiley

Empfohlene Vorkenntnisse:
- Kohärente Optik

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie

| SWS | Leistungspunkte: 2 | Verantwortung
Institut für Radioökologie und Strahlenschutz |
|------|-------------------|---|

Regelmäßigkeit: Wintersemester

Inhalt:

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Mechanik und Quantenmechanik
- Elektrodynamik
- Moleküle, Kerne, Teilchen, Statistik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Kernenergie und Brennstoffkreislauf, technische Aspekte und gesellschaftlicher Diskurs

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

Trotz oder gerade wegen des Ausstiegs aus der Kernenergienutzung in Deutschland ist dieses Thema weiterhin Gegenstand der gesellschaftlichen Diskussion. In dieser Veranstaltung werden die technischen Grundlagen von Kernenergienutzung, von der Urangewinnung über die Funktionsweise heutiger und zukünftiger Reaktoren bis zur Entsorgung abgebrannten Kernbrennstoffs behandelt. Neben den technischen Aspekten wird begleitend die Problematik aus sozialwissenschaftlichen/ethischen und rechtlichen Gesichtspunkten erläutert und diskutiert (eigene Meinung erwünscht!)

Grundlegende Literatur:

- Michaelis, *Handbuch Kernenergie*
- Heinloth, *Die Energiefrage*, Vieweg
- Weitere Literatur wird in der Veranstaltung bekannt gegeben

Empfohlene Vorkenntnisse:

- Von Vorteil: Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" (Kann parallel gehört werden)
- Mechanik und Relativität
- Elektrodynamik
- Moleküle, Kerne, Teilchen, Statistik

Modulzugehörigkeit:

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Radioaktivität in der Umwelt und Strahlengefährdung des Menschen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
Die Vorlesung behandelt die Vorkommen natürlicher und künstlicher Radionuklide in der Umwelt, beschreibt die Pfade radioaktiver Stoffe durch die Umwelt zum Menschen und gibt eine Bewertung der resultierenden Strahlenexposition und der mit ihnen verbundenen Risiken. Im einzelnen werden folgende Themen behandelt:
- Folgen des Uranbergbaus für Beschäftigte und Umwelt.
- Exposition von Patienten bei Radium- und Radontherapie.

Grundlegende Literatur:
- Richard Rhodes, *The making of the Atomic Bomb*
- Warner, Kirchmann *Nuclear Test Explosions*
- Eisenbud, *Environmental Radioactivity*
- Weitere Literatur in der Vorlesung (Originalveröffentlichungen und web links)

Empfohlene Vorkenntnisse:
- Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Strahlenschutz und Radioökologie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:

(mit der Möglichkeit zum Erwerb der Fachkunde (für SSB S 4.1) beim Umgang mit offenen radioaktiven Stoffen nach StrlSchV)

Grundlegende Literatur:

- Allgemeine Verwaltungsvorschrift zu § 47 Strahlenschutzverordnung: *Ermittlung der Strahlenexposition durch die Ableitung radioaktiver Stoffe aus Anlagen oder Einrichtungen*, Drucksache 88/12 15.02.12
- Weitere Literatur wird in der Veranstaltung bekannt gegeben

Empfohlene Vorkenntnisse:

- Notwendige Voraussetzung: Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"

Modulzugehörigkeit:

- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

Grundlegende Literatur:
- [Http://www.nucleonica.com/](http://www.nucleonica.com/) : Karlsruhe Chart of Nuclides

Empfohlene Vorkenntnisse:
- Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie" (Kann parallel gehört werden)

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Kernphysikalische Anwendungen in der Umweltphysik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:

Grundlegende Literatur:
- Davis, *Meteorites, Comets and Planets*

Empfohlene Vorkenntnisse:
- Optik, Atomphysik, Quantenphänomene
- Moleküle, Kerne, Teilchen, Statistik
- Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Radiochemie & Radioanalytik

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Grundlagen der Chemie
- Vorlesung "Kernphysikalische und kernchemische Grundlagen des Strahlenschutzes und der Radioökologie"

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Einführung in die Massenspektrometrie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Mechanik
- Elektrodynamik
- Optik, Atomphysik, Quantenphänomene

Modulzugehörigkeit:
- Ausgewählte Themen moderner Physik
Seminar/Praktikum Strahlenschutz und Radioökologie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- und Sommersemester

Inhalt:
Nach Absprache mit den Dozenten

Grundlegende Literatur:

- DVD mit Unterlagen aller Lehrveranstaltungen, auch verfügbar unter www.zsr.uni-hannover.de
- Karlsruher Nuklidkarte
- Strahlenschutzverordnung (StrlSchV)

Empfohlene Vorkenntnisse:
- Mechanik und Relativität
- Elektrizität
- Optik, Atomphysik, Quantenphänomene
- Moleküle, Kerne, Teilchen, Statistik

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Fachkunde im Strahlenschutz

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>min. 2</td>
<td>2</td>
<td>Institut für Radioökologie und Strahlenschutz</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Winter- und Sommersemester

Inhalt:

Grundlegende Literatur:
- [Karlsruhe Chart of Nuclides](http://www.nucleonica.com/)
- [Röntgenverordnung](http://www.nucleonica.com/)

Empfohlene Vorkenntnisse:
- Modul: Mechanik und Relativität
- Modul: Elektrizität
- Modul: Optik, Atomphysik, Quantenphänomene
- Modul: Moleküle, Kerne Teilchen, Festkörper

Modulzugehörigkeit:
- Moderne Aspekte der Physik
- Ausgewählte Themen moderner Physik
Lehrveranstaltungen der Meteorologie

<table>
<thead>
<tr>
<th>Numerische Wettervorhersage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2+1</td>
</tr>
<tr>
<td>Regelmäßigkeit: Sommersemester</td>
</tr>
</tbody>
</table>

Inhalt:
- Die Grundgleichungen
- Meteorologische Koordinatensysteme
- Kartenprojektionen
- Das Filterproblem
- Gefilterte Prognosemodelle
- Ungefilterte Prognosemodelle
- Initialisierung
- Zur numerischen Lösung des Gleichungssystems
- Die Vorhersagemodelle des DWD
- Prognoseprüfung

Grundlegende Literatur:

Roache, *Computational Fluid Dynamics*, Hermosa Publishers

Empfohlene Vorkenntnisse:
- Modul Einführung in die Meteorologie
- Kinematik und Dynamik

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
<table>
<thead>
<tr>
<th>Programmierpraktikum zur Numerischen Wettervorhersage</th>
</tr>
</thead>
</table>
| **SWS** 2 | **Leistungspunkte:** 4 | **Verantwortung**
| | | Institut für Meteorologie und Klimatologie |

Regelmäßigkeit: Wintersemester

Inhalt:
- Entwicklung und Programmierung eines einfachen zweidimensionalen barotropen Modells zur Prognose des Geopotentials der 500 hPa-Fläche mittels finiter Differenzen auf Basis der 2D-Vorticity-Gleichung sowie der Poisson-Gleichung für das Geopotential
- Mit Hilfe des entwickelten Programms: Simulation von Rossby-Wellen, Durchführung einer Vorhersage für den Nordatlantik

Grundlegende Literatur:
- Etling, D.: *Theoretische Meteorologie*, Springer
- Roache, *Computational Fluid Dynamics*, Hermosa Publishers

Empfohlene Vorkenntnisse:
- Angewandtes Programmieren
- Numerische Wettervorhersage
- Kinematik und Dynamik

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Schadstoffausbreitung in der Atmosphäre

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:
- Wirkungen von Luftbeimengungen auf die belebte und die unbelebte Natur.
- Mathematische Ausbreitungsmodelle (Gauß-Modell, Euler-Modell, Lagrangesches Partikelmodell).
- Luftüberwachung (Grenz- und Beurteilungswerte, TA-Luft).
- Ausgewählte Probleme der Luftreinhaltung (Ozon, Smog, saurer Regen, Ausbreitung in Straßenschluchten).

Grundlegende Literatur:

Empfohlene Vorkenntnisse:
- Einführung in die Meteorologie
- Kinematik und Dynamik
- Turbulenz und Diffusion

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Turbulenz II

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:
- Turbulenzeigenschaften
- Ensemble gemittelte Gleichungen
- Räumlich gemittelte Gleichungen
- Turbulente Flüsse
- Erhaltungsgleichungen für Kovarianzen

Grundlegende Literatur:

* Wyngaard, Turbulence in the Atmosphere, Cambridge University Press

Empfohlene Vorkenntnisse:
- Kinematik und Dynamik
- Turbulenz und Diffusion

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Atmosphärische Konvektion

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:
- Atmosphärische Konvektion: Grenzschichtwachstum, Entrainment, Strukturbildung

Grundlegende Literatur:
- Stull, R.B.: *An Introduction to Boundary Layer Meteorology*, Springer
- Tritton: *Physical Fluid Dynamics*, Oxford University Press

Empfohlene Vorkenntnisse:
- Thermodynamik und Statik
- Kinematik und Dynamik
- Turbulenz und Diffusion

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
<table>
<thead>
<tr>
<th>Programmierpraktikum zur Simulation der atmosphärischen Grenzschicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommer- oder Wintersemester

Inhalt:
- Entwicklung und Programmierung eines einfachen eindimensionalen Grenzschichtmodells auf Basis finiter Differenzen
- Simulation von Grenzschichtwindprofilen (Prandtl-/Ekman-Schicht)

Grundlegende Literatur:
- Etling, D.: Theoretische Meteorologie, Springer
- Ferziger, J.H. und M. Peric: Computational Methods for Fluid Dynamics, Springer
- Roache, Computational Fluid Dynamics, Hermosa Publishers

Empfohlene Vorkenntnisse:
- Angewandtes Programmieren
- Kinematik und Dynamik
- Turbulenz und Diffusion
- Numerische Wettervorhersage
- Atmosphärische Grenzschicht und Konvektion

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Simulation turbulenter Strömungen mit LES-Modellen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Grundprinzipien der Turbulenzsimulation: Direkte numerische Simulation (DNS), Grobstruktursimulation (Large-Eddy Simulation, LES), Filterung, SGS-Modelle
- Numerik von LES-Modellen am Beispiel des LES-Modells PALM: Grundgleichungen, numerische Verfahren, Parallelisierung
- Beispiele von Turbulenzsimulationen atmosphärischer Grenzschichtströmungen

Grundlegende Literatur:
- Fröhlich, J.: *Large Eddy Simulation turbulenter Strömungen*, Springer

Empfohlene Vorkenntnisse:
- Turbulenz und Diffusion
- Numerische Wettervorhersage
- Atmosphärische Grenzschicht und Konvektion
- Programmierpraktikum zur numerischen Wettervorhersage

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Numerisches Praktikum zur Simulation turbulenter Strömungen mit LES-Modellen

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Geschäftsführende Leitung des Instituts für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Blockveranstaltung zum Ende des Sommersemesters

Inhalt:
- Installation des LES-Modells PALM
- Durchführung von Simulationen der konvektiven atmosphärischen Grenzschicht und Analyse der Daten
- Simulation der turbulenten Umströmung eines Einzelgebäudes
- Entwicklung und Programmierung eines Zusatzmoduls zur Simulation von Konvektion über heterogen geheizten Oberflächen

Grundlegende Literatur:
- Fröhlich, J.: *Large Eddy Simulation turbulenter Strömungen*, Springer
- Roache: *Computational Fluid Dynamics*, Hermosa Publishers

Empfohlene Vorkenntnisse:
- Turbulenz und Diffusion
- Atmosphärische Grenzschicht und Konvektion
- Simulation turbulentter Strömungen mit LES-Modellen
- Programmierpraktikum zur numerischen Wettervorhersage

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Agrarmeteorologie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Strahlungs- und Wasserhaushalt von Pflanzen
- Globales Wasser- und Strahlungsangebot, Klimazonen
- Belaubungsscharakteristik
- Wasser und Pflanze
- Bestimmung der Verdunstung und des Bodenwassergehaltes
- Bestandsklima
- Phänologie
- Pflanzenschäden und deren Verhütung
- Das Klima in besonderen Räumen
- Bauernregel und Singularitäten
- Landwirtschaft und Klimaentwicklung

Grundlegende Literatur:
Vorlesungsskript

Empfohlene Vorkenntnisse:
- Einführung in die Meteorologie

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor Geographie
- Bachelor und Master Physik
Lokalklima

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmaßigkeit: Wintersemester

Inhalt:
- Das Klima der bodennahen Luftschicht
- Das Klima der Stadt
- Lokalklima Wald
- Lokalklima Wasser und Küste
- Das Klima in orographisch gegliedertem Gelände

Grundlegende Literatur:
Vorlesungsskript

Empfohlene Vorkenntnisse:
- Einführung in die Meteorologie

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor Geographie
- Bachelor und Master Physik
Fernerkundung 1

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2+1</td>
<td>4</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester

Inhalt:

- Grundlagen für Messungen von Satelliten und deren Anwendung zur Erfassung von atmosphärischen Prozessen
- Ableitung von Strahlungsmessungen aus Satellitendaten

Grundlegende Literatur:

Kidder and Vonder Haar: *Satellite Meteorology: An Introduction, Academic Press*

Empfohlene Vorkenntnisse:

- Einführung in die Meteorologie
- Strahlung

Modulzugehörigkeit:

- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Master Studienfach optische Technologie
- Bachelor und Master Physik
<table>
<thead>
<tr>
<th>Fernerkundung II</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2+1</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester

Inhalt:
- Der Beitrag bodengebundener und satellitengestützter Fernerkundungsverfahren zu aktuellen Forschungsthemen zu Klima, Wetter und globaler Wandel.
- Darstellung der Methoden und deren Ergebnisse

Grundlegende Literatur:
Kidder and Von der Haar: *Satellite Meteorology: An Introduction, Academic Press*

Empfohlene Vorkenntnisse:
- Einführung in die Meteorologie
- Strahlung
- Fernerkundung I

Modulzugehörigkeit:
- Wahlmodul Meteorologie
- Ausgewählte Themen moderner Meteorologie A
- Ausgewählte Themen moderner Meteorologie B
- Ausgewählte Themen moderner Meteorologie C
- Bachelor und Master Physik
Seminar zur fortgeschrittenen Meteorologie

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Wintersemester und Sommersemester

Inhalt:
Fortgeschrittene Themen der Meteorologie

Grundlegende Literatur:
Wird in der Lehrveranstaltung bekannt gegeben.

Empfohlene Vorkenntnisse:
Wird in der Lehrveranstaltung bekannt gegeben.

Modulzugehörigkeit:
- Ausgewählte Themen moderner Meteorologie C
Meteorologische Exkursion II

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester oder Wintersemester

Inhalt:

Studierende im Masterstudiengang Meteorologie können an der alljährlich und regelmäßig stattfindenden Meteorologischen Exkursion teilnehmen. Sie bereiten sich zu einem thematischen Teilspekt der Exkursion vor, tragen dazu während der Exkursion vor und stehen als Diskussions- und Ansprechpartner zur Verfügung, verfassen einen schriftlichen Beitrag zu dem Exkursionsbericht und tragen im Abschlussseminar darüber vor. Die inhaltlichen und formalen Anforderungen an diese Beiträge zur Exkursion bemessen sich an der Qualifikation eines abgeschlossenen Bachelorstudiums.

Grundlegende Literatur:

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:
- Ausgewählte Themen moderner Meteorologie C
<table>
<thead>
<tr>
<th>Externes Praktikum Inland</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester oder Wintersemester

Inhalt:
Die Studierenden bewerben sich eigenständig an einer inländischen Einrichtung (Forschungseinrichtung, Behörde, Ingenieurbüro etc) um ein meteorologisch ausgerichtetes vierwöchiges Praktikum. Nach erfolgreichem Abschluss des Praktikums verfassen sie dazu einen Bericht.

Grundlegende Literatur:

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:
- Ausgewählte Themen moderner Meteorologie C
Externes Praktikum Ausland

<table>
<thead>
<tr>
<th>SWS</th>
<th>Leistungspunkte:</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>Institut für Meteorologie und Klimatologie</td>
</tr>
</tbody>
</table>

Regelmäßigkeit: Sommersemester oder Wintersemester

Inhalt:
Die Studierenden bewerben sich eigenständig an einer ausländischen Einrichtung (Forschungseinrichtung, Behörde, Ingenieurbüro etc.) um ein meteorologisch ausgerichtetes vierwöchiges Praktikum und bereiten sich dazu vor. Nach erfolgreichem Abschluss des Praktikums verfassen sie dazu einen Bericht.

Grundlegende Literatur:

Empfohlene Vorkenntnisse:

Modulzugehörigkeit:
- Ausgewählte Themen moderner Meteorologie C
- Das Auslandspraktikum kann auf Antrag auch im Bereich Schlüsselkompetenzen eingebracht werden