

Bachelor's Programme Mathematics Master programme Mathematics

Module catalogue

modification date 12.02.2020

Faculty of Mathematics and Physics of the Leibniz University Hannover

Contact	Student Deanery Faculty of Mathematics and Physics Appelstr. 11 A 30167 Hannover Tel.: 0511/ 762-4466 studiensekretariat@maphy.uni-hannover.de			
Dean of Studies Office	Prof. Dr. Christoph Walker Welfengarten 1 30167 Hannover studiendekan@maphy.uni-hannover.de			
Course coordinator	Axel Köhler Dr. Katrin Radatz Appelstr. 11 A 30167 Hannover			

Tel.: 0511/ 762-5450

sgk@maphy.uni-hannover.de

Preface

The module catalogue mathematics consist of two parts, the module descriptions and the appendix with the course descriptions. Given that different courses can be chosen for elective module, these will be described in more detail in the appendix. In those cases the information of the Course Overview and the frequency of the course are found at the courses and not at the modules.

Please note that this here is a compilation of the courses of the mathematics that are offered on a regular basis. In particular further courses of the university calender" can be assigned to "compulsory elective module and den Elective module.

The module catalogue should also be understood as addition to the Examination regulations. The recent version of our Examination regulations can be found under

http://www.uni-hannover.de/de/studium/studiengaenge/mathe/ordnungen/index.php

Table of Contents

CURRICULUM	6
MODULES OF BACHELOR MATHEMATICS	7
COMPULSORY MODULE BACHELOR	7
Analysis I	7
Analysis II	8
Advanced Analytic Methods	9
Algebraic methods I	10
Key competence: Computeralgebra	11
Algebraic methods II	12
Advanced algebraic methods	13
Practical methods of mathematics	14
Stochastic Methods	15
Proseminar	16
COMPULSORY ELECTIVE MODULES BACHELOR	17
Basics Bachelor Algebra, number theory, discrete mathematics	17
Basics Bachelor Analysis	17
Basics Bachelor Geometry	18
Basics Bachelor Numerics	18
Basics Bachelor Stochastics	19
Specialization Bachelor Algebra, number theory, discrete mathematics	19
Specialization Bachelor Analysis	20
Specialization Bachelor Geometry	20
Specialization Bachelor Numerics	21
Specialization Bachelor Stochastics	21
SEMINAR	22
BACHELORTHESIS	23

MODULES OF MASTER MATHEMATICS	24
Pure Mathematics 1	24
Pure Mathematics 2	24
Applied Mathematics	25
Applied Mathematics 2	25
Elective module 1	26
Elective module 2	26
Seminar	27
Key Skills	28
Masterthesis	29
APPENDIX: LECTURES FOR BACHELOR AND MASTER DEGREE PROGRAMME:	30

Curriculum Bachelor Course

	1. Semester	2. Semester	3. Semester	4. Semester	5. Semester	6. Semester	LP
	Analysis I 10 LP, SL, PL	Analysis II 10 LP, SL, PL	(Analysis III 10 LP, SL, PL)	Probability and Statistics I 10 LP, SL, PL	Analysis III 10 LP, SL, PL		
Basics	Lineare Algebra I 10 LP, SL, PL	Lineare Algebra II 10 LP, SL, PL	Algebra I 10 LP, SL, PL				
		Algorithmic programming 4 LP, PL	Numerical Mathematics I 10 LP, SL, PL				84
Key skills			Seminar 5 LP, SL				5
ar			Proseminar				5
Prosemin			5 LP, PL				
optional section				courses in an e	extent of 40 CP, 4	4xSL, 4xPL	40
Computer Science	Basics of theoretical Informatics 5 CP, SL, PL (also 3. Sem.)				Data Structur and Algorrithm 5 CP, SL, PL		10
application subject	application sub Philosophy, Phy 18 CP	jects are: busine /sics and Econon	ss administration nmics. Other subje	, Geodesy and G ects are possible	eoinformatics, Ir upon request.	iformatics,	18
Seminar					Seminar 5 CP, PL		5
						Bachelorthesis	13
Bachelor thesis						13 CP	
Credit Points	30/4	24/2	According to ind	ividual planning	j variable		180

Modules of Bachelor Mathematics

Compulsory module Bachelor

Analysis I				0201
Frequency	Winter Semester, annual	у		
Responsible for Module	Elmar Schrohe, Institute	of Analysis		
Type of Course (Semester Hours)	Lecture "Analysis I" (4 Se Tutorial on "Analysis I" (2	mester Hou Semester H	rs) Iours)	
Major course assessment	Course Achievement: Tut	orial		
for acquisition of LP	Exam Performance: Exam			
Grade composition	Grade of exam			
Credit Points (ECTS): 10	Study in Class (h):	90	Independent Study (h)): 210
Learning Outcomes:				
Competence in dealing with mathematical language. Basic understanding of the correct solution of mathematical problems by means of one-dimensional convergence considerations, differential and integral calculus. As a result of the exercise sessions, the students are familiar with mathematically exact formulations and conclusions in simple contexts and are able to present them.				
Topics: • Number systems; systematic introduction of real and complex numbers • Sequences and series • Convergence and continuity • Differential calculus for functions of one variable • Integral calculus for functions of one variable. • Sequences of functional and power series				
H. Amann & J. Escher: Analysis	7, Birknauser verlag, 2002			
K. Königsberger: Analysis 1, Vieweg+	ringer Verlag 2004			
Recommended Prior Knowledge:				
School knowledge in Mathematics (c	gymnasiale Oberstufe)	<u> </u>		
Where applicable entrance requirement	s and/or restricted numbe	r of partici	pants:	
Applicability:				
Bachelor's Programme Mathematics				
Interdisciplinary Bachelor's Degree P	rogramm			
L				

Analysis II					0202
Frequency		Summer Semester, annually			
Responsible for Module		Elmar Schrohe, Institute of Analysis			
Course (Semester Hours)		Lecture "Analysis II" (4 Semester Hours) Tutorial on "Analysis II" (2 Semester Hours)			
Major course assessment		Course Achievement: Tut	orial		
for acquisition of LP		Exam Performance: Exam			
Grade composition		Grade of exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h)	: 210
Learning Outcomes:		-		•	

Basic understanding of the correct solution of mathematical and natural sciences tasks using multidimensional convergence considerations, differential and integral calculus. Secure mastery of the appropriate techniques and mathematical methods of proof. Teamwork by handling tasks in groups and discussing them in the exercise sessions.

Topics:

- Topological concepts such as metric and normed spaces, convergence, continuity, completeness, compactness;
- Differentiation of functions of several variables, total and partial differentiability, theorems on inverse functions and implicit functions, local extrema with and without constraints; vector fields and potentials; path integrals.
- Ordinary differential equations, existence, uniqueness, elementary methods of solution.

Reading list:

- H. Amann & J. Escher: Analysis II, Birkhäuser Verlag, 1999
- 0. Forster: *Analysis 2*, Vieweg+Teubner, 2006
- J. Jost: Postmodern Analysis, Springer Verlag 2005
- K. Königsberger: *Analysis 2*, Springer Verlag 2004

Recommended Prior Knowledge:

- Linear Algebra I
- Analysis I

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

- Bachelor's Programme Mathematics
- Interdisciplinary Bachelor's Degree Programm

Adva	0203			
(Fortgesch	rittene analytische Methoden)			
Frequency				
Responsible for Module Elmar Schrohe, Institute of Analysis				
Course (Semester Hours)	Lecture "Analysis III" (4 Semester Hours) Tutorial on "Analysis III" (2 Semester Hours)			
Major course assessment for acquisition of LP	Course Achievement: Tutorial Exam Performance: Exam or oral examination			
Grade composition	Grade of exam or oral examination			
Credit Points (ECTS): 10	Study in Class (h): 90	Independent Study (h): 210	
Deepened understanding of analytical methods, especially in the theory of measures and integration as well as vector analysis. Ability to independently elaborate more difficult mathematical arguments on topics of the lecture and their presentation in the exercise groups. Topics: Elements of Lebesgue's measure theory, multidimensional Lebesgue integral along with essential theorems (monotone and dominated convergence, Fubini's theorem, transformation rule); vector calculus; Gauss' and Stokes' theorems; manifolds.				
 Reading list: H. Amann & J. Escher: Analysis III W. M. Boothby: An introduction to differentiable manifolds and Riemannian geometry, Academic Press O. Forster: Analysis 3, Vieweg+Teubner, 2008 J. Jost: Postmodern Analysis, Springer Verlag 2005 				
Recommended Prior Knowledge:				
 Analysis I + II 	• Analysis I + II			
Where applicable entrance requirements and/or restricted number of participants:				

Applicability:

Bachelor's Programme Mathematics

ا (Alg	0101				
Frequency	Winter Semester, annually				
Responsible for Module Klaus Hulek, Institute of Algebraic Geometry					
Course (Semester Hours)	Lecture "Lineare Algebra I" (4 Semester Hours) Tutorial on "Lineare Algebra I" (2 Semester Hours)				
Major course assessment for acquisition of LP	The Course Achievement is to be performed at the tutorial to "Lineare Algebra I". Exam Performance: Exam for "Lineare Algebra I"				
Grade composition	Grade of exam				
Credit Points (ECTS): 10	Study in Class (h): 90	Independent Study (h): 210		
Basic understanding of the mathematica competence in handling systems of linea of the underlying algebraic structures. Ca of adequate methods for this.	Basic understanding of the mathematical way of thinking and its application towards a variety of problems. Solid competence in handling systems of linear equations and the corresponding methods for solving them; sound knowledge of the underlying algebraic structures. Capability of expressing and presenting mathematical reasoning, and knowledge of adequate methods for this.				
Topics: Linear Algebra I: • Basic properties of vector spaces (basis and dimension); • linear maps and matrices; • determinants; • systems of linear equations and methods for solving them (Gauss algorithm); • eigenvalues and eigenvectors; • diagonalisation.					
Reading list:	Reading list:				
Recommended Prior Knowledge: • School knowledge in Mathematics (gymnasiale Oberstufe)					
Where applicable entrance requirement	s and/or restricted number of parti	cipants:			

Bachelor's Programme Mathematics

Key competence: Computeralgebra						
Frequency		Winter Semester, annual	Winter Semester, annually			
Responsible for Module		Matthias Schütt, Institute of Algebraic Geometry				
Course (Semester Hours)		Practical course "Computeralgebra" (3 Semester Hours)				
Major course assessment for acquisition of LP		Course Achievement at university lecturer's option				
Grade composition						
Credit Points (ECTS):	5	Study in Class (h):	60	Independent Study (h):	90	
Learning Outcomes:				•		

Experience in appropriate use of computer algebra systems as tools for solving problems from Analysis and Linear Algebra; in particular: choice of appropriate tools, knowing and avoiding potential mistakes, knowing the limits of such systems, use of visualization tools and programming of smaller functions/methods/procedures.

Topics:

- Basic knowledge on the functioning and use of computer algebra systems
- Selected applications from Linear Algebra, e.g. solving linear systems of equations, linear maps, change of basis
- Selected applications from Analysis, e.g. zeros, differentiation, visualization of graphs of functions
- Selected applications to topics known from school: gcd, conic sections
- Small projects, e.g. solutions of polynomial equations with visualization, Chinese Remainder Theorem

Reading list:

T. Theobald, S. Iliman: *Einführung in die Computerorientierte Mathematik*, Springer Spektrum 2015

Recommended Prior Knowledge:

- Lineare Algebra, Analysis
- □ Some basic experience in the use of computers

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Algebraic methods II					0102
(Algebraische Methoden II)					0102
Frequency Summer Semester, annually					
Responsible for Module		Klaus Hulek, Institute of Algebraic Geometry			
Course (Semester Hours) Lecture "Lineare Algebra II" (4 Semester Hours) Tutorial zu "Lineare Algebra II" (2 Semester Hours)					
Major course assessment for acquisition of LP		The Course Achievement is to be performed at the tutorial Exam Performance: Exam			
Grade composition		Grade of exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h)	: 210
		•		•	

Extended mathematical competences regarding methods for dealing with linear structures And a deepened understanding for algebraic methods and their relationship to geometric questions. Extended capability of expressing and presenting mathematical reasoning. Competence in applying mathematical theories.

Topics:

- Euclidean and unitary vector spaces
- orthonormalization algorithm
- orthogonal and unitary endomorphisms
- quadrics
- Jordan normal form
- multilinear algebra

Reading list:

G. Fischer: *Lineare Algebra*

Recommended Prior Knowledge:

Algebraic methods I

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Advanced algebraic methods					0103
(Fortgeschrittene algebraische Methoden)					
Frequency		Winter Semester, annually			
Responsible for Module		Christine Bessenrodt, Institute of Algebra, Number theory and Discrete Mathematics			
Course (Semester Hours)		Lecture "Algebra I" (4 Semester Hours) Tutorial on "Algebra I" (2 Semester Hours)			
Major course assessment for acquisition of LP		The Course Achievement is to be performed at the Tutorial Exam Performance: Exam or oral examination			
Grade composition		Grade of exam or of oral examination			
Credit Points (ECTS):	10	Study in Class (h): 90 Independent Study (h): 210			
Learning Outcomes:				•	

Deepening of the understanding of algebraic structures; insight into the interconnectedness of mathematical fields via applications of algebraic methods in elementary number theory and towards the solution of classical geometric construction problems. Competence for independent development of advanced mathematical reasoning related to the topics of the course, and presentation in the problem classes.

Topics:

Arithmetic of the integers; groups (permutation groups, symmetry groups, group actions); rings (ideals, polynomial rings, divisibility, Euclidean rings, prime factorization); arithmetic modulo n (congruences, prime residue class groups); fields (algebraic field extensions, constructions with ruler and compass, cyclotomic fields, finite fields).

Reading list:

- G. Fischer: *Lehrbuch der Algebra*
- E. Kunz: Algebra
- 📖 J. Wolfart: Einführung in die Zahlentheorie und Algebra

Recommended Prior Knowledge:

• Algebraic methods I + II

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Bachelor's Programme Mathematics

As module "Algebra I" also for:

- Interdisciplinary Bachelor's Degree Programm
- Master's Teacher Training Course for Grammar Schools (Zweitfach)

Practical methods of mathematics					0301			
	Praktisch	e verfahren der Mathem	iatikj					
Frequency		Winter Semester and Summer Semester, annually						
Responsible for Module		Marc Steinbach, Institute of Applied Mathematics						
Course (Semester Hours)		Lecture "Numerische Mathematik I" (4 Semester Hours) Tutorial on "Numerische Mathematik I" (2 Semester Hours) Lecture "Algorithmisches Programmieren" (2 Semester Hours) Tutorial on "Algorithmisches Programmieren" (1 Semester Hours)						
Major course assessment for acquisition of LP		Course Achievement: the tutorial on "Numerische Mathematik I" Exam Performance: written exam of "Numerische Mathematik I" and practical programming exam of "Algorithmisches Programmieren"						
Grade composition		Weighted average of grades in written exam (weight 10) and in practical programming exam (weight 4)						
Credit Points (ECTS):	14	Study in Class (h):	Study in Class (h): 210 Independent Study (h): 210					
Learneline Outerman								

"Numerische Mathematik I": Knowledge of numerical methods for approximatively solving basic mathematical problems. Assessing the suitability of different methods. Being aware of areas of application and limitations of numerical methods.

"Algorithmic programming": Capability of using programming languages in modeling and in solving problems from various fields of mathematics and its application areas.

Topics:

Numerische Mathematik I: Interpolation of functions by polynomials and splines. Quadrature formulae for numerical integration. Direct methods for linear systems of equations: LU and Cholesky decomposition. Iterative methods for linear systems of equations: Jacobi, Gauss-Seidel, CG. Newton's method for systems of nonlinear equations. Condition of mathematical problems and stability of numerical algorithms.

Algorithmic programming:

Implementing and testIng basic numerical algorithms in a higher programming language.

Reading list:

- P. Deuflhard, A. Hohmann: *Numerische Mathematik I*. De Gruyter.
- A. Quarteroni, R. Sacco, F. Saleri: *Numerische Mathematik I und II*, Springer-Verlag.

Recommended Prior Knowledge:

- Lineare Algebra I (and II) and Analysis I (and II)
- Algorithmisches Programmieren

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Stochastic Methods					0401
Frequency		Summer Semester, Annu	ally		
Responsible for Module		Stefan Weber, Institute	of Probabilit	y and Statistics	
Course (Semester Hours) Lecture "Mathematische Stochastik I" (4 Semester Hours) Tutorial "Mathematische Stochastik I" (2 Semester Hours)					
Major course assessment for acquisition of LP		Course Achievement: Tur Exam Performance: Exar	torial n		
Grade composition		Grade of exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h)	: 210

Basic knowledge of combinatorics, probability, and statistics. Students should understand elementary stochastic models and techniques, and be able to formulate, analyse and solve simple problems involving randomness.

Topics:

The lecture provides an introduction to probability and statistics.

Topics include:

- Combinatorics
- Axioms of probability theory
- Conditional Probability and independence
- Random variables and their distributions
- Expectation and variance
- Modes of convergence
- Limit theorems for sums of independent random variables
- Elementary statistics

Reading list:

- Georgii, H.: *Stochastik*, de Gruyter
- Jacod, J. & Protter. P: *Probability Essentials*, Springer
- Krengel, U.: Einführung in die Wahrscheinlichkeitstheorie und Statistik

Recommended Prior Knowledge:

- Lineare Algebra I (and II)
- Analysis I (and II)

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

- Bachelor's Programme Mathematics
- Interdisciplinary Bachelor's Degree Programm (Erstfach)
- Master's Teacher Training Course for Grammar Schools (Zweitfach)

		Proseminar			0001
Frequency		Winter Semester and Su	mmer Sem	ester, annual	
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		Proseminar (2 Semester	Hours)		
Major course assessment for acquisition of LP		Seminar performance w	ith written	composition	
Grade composition		Grade of seminar perfor	mance		
Credit Points (ECTS):	5	Study in Class (h):	30	Independent Study (h)	: 120
Learning Outcomes:					

Written description of a concrete mathematical topic, its surrounding and if so its historic background. Oral presentation of results. Ability to discuss with other participants. Use of suitable media (black board, PC, projector) for preparation and presentation.

Topics:
variable, depends on topic of proseminar.
Reading list:
variable, depends on topic of proseminar.
Recommended Prior Knowledge:
Analytic and algebraic methods
Where applicable entrance requirements and/or restricted number of participants:
Applicability:
Bachelor's Programme Mathematics

Compulsory elective modules Bachelor

Basics Bachelor Algebra, number theory, discrete mathematics (Grundlagen Bachelor Algebra, Zahlentheorie, Diskrete Mathematik)				0104	
Responsible for Module	Christine Bessenrodt, Institute of Algebra, Number Theory and Discrete Mathematics			ete	
Course	Lecture with tutorial (4+2): Algebra II or Discrete mathematics (see appendix) Alternative courses can be assigned to this module in the university calendar.				
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam				
Credit Points (ECTS): 10	Study in Class (h):90Independent Study (h):210				
Learning Outcomes:					

Extended knowledge in an area of algebra or basic knowledge in number theory; understanding of relational and operational structures and their algebraic treatment.

Knowledge of basic functions in combinatorics, including methods and applications. Solid grasp of mathmatical argumentation and methodology. Students are able to solve concrete problems using suitable methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Bachelor's Programme Mathematics •

Basics Bachelor Analysis (Grundlagen Bachelor Analysis)					
Responsible for Module Wolfram Bauer, Institute of Analysis					
Course		Lecture with tutorial (4+2): Complex analysis or Manifolds (see appendix) Alternative courses can be assigned to this module in the university calendar.			
Major course assessment	ourse assessment Course Achievement: at university lecturer's option				
for acquisition of LP		Exam Performance: oral examination or Exam			
Credit Points (ECTS):	10	Study in Class (h): 90 I	Independent Study (h):	210	
Learning Outcomes		÷			

earning

Deepened acquisition of analytic thinking based on topics in complex analysis, topology and functional analysis. Sound knowledge and reliable command of mathematical thinking and argumentation. Students gain the ability to solve concrete tasks by applying suitable methods.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• **Bachelor's Programme Mathematics**

Basics Bachelor Geometry				
(Grundlagen Bachelor Geometrie)				
Responsible for Module	Matthias Schütt, Institute of Algebraic Geometry			
Course	Lecture with tutorial (4+2): Algebra II or Manifolds (see appendix) Alternative courses can be assigned to this module in the university calendar.			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h):	210		
Learning Outcomes: Understanding of geometric constructions, structures in space and the interplay of algebraic, geometric, analytic, and topological methods. Sure command of mathematical reasoning. Students are able to solve explicit problems using appropriate methods. Where applicable entrance requirements and/or restricted number of participants:				
Applicability:				

Bachelor's Programme Mathematics

Basics Bachelor Numerics				0302	
	(G	rundlagen Bachelor Numerik	()		
Responsible for Module Sven Beuchler, Institute of Applied Mathematics					
Course		Lecture and tutorial (4+2): Numerical Mathematics II (see appendix) Alternative courses can be assigned to this module in the university calendar.			
Major course assessment for acquisition of LP		Course Achievement: at the instructor's option Exam Performance: oral or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes:					
Knowledge of numerical methods for approximately solving demanding mathematical problems. Assessing the suitability of different methods depending on the circumstances and on the limitations of numerical methods. Proficiency in the mathematical way of thinking and argueing. Students are capable of solving concrete problems by applying suitable methods.					
Where applicable entrance requirements and/or restricted number of participants:					
Applicability: • Bachelor's Programme	Mathe	ematics			

Basics Bachelor Stochastics					
(Grundlagen Bachelor Stochastik)					
Responsible for Module	Stefan Weber, Institute of Probaility and Statistics				
Course	Lecture with tutorial (4+2): Probability and Statistics II (see appendix) Alternative courses can be assigned for this module in university calendar.				
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam				
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210				
Learning Outcomes: Probablility, Statististics and their Applications. Students understand key mathematical concepts and arguments, and can solve exercises using appropriate methods.					
Where applicable entrance requireme	ents and/or restricted number of participants:				

Applicability:

• Bachelor's Programme Mathematics

Specialization Bachelor Algebra, number theory, discrete mathematics (Spezialisierung Bachelor Algebra, Zahlentheorie, Diskrete Mathematik)					0105
Responsible for Module		Ulrich Derenthal, Institute o Mathematics	f Algebra	a, Number Theory and Discrete	2
Course		Lectures that belong to this n Further courses can be assign	nodule ca ed for th	n be found in appendix. is module in the university cale	ndar.
Major course assessment for acquisition of LP		Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS): 10	0	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes:					

Advanced understanding of algebraic arguments and methods, good knowledge of two areas of algebra or number theory. Advanced knowledge of the theory of relational and operational structures and their applications, for instance in coding theory, applied algebra or algebraic combinatorics.

The students have a good grasp of the logical structures of the subject; they are able to derive the key results and produce the most important examples. They can analyse problems from the area and identify as well as apply methods suitable for solving them. The students are capable of explaining and justifying their approach.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Specialization Bachelor Analysis (Spezialisierung Bachelor Analysis)				
Responsible for Module Wolfram Bauer, Institut für Analysis				
Course	Lectures that belong to this module can be found in appendix. Further courses can be assigned for this module in the university calendar.			
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h):	210		

Deepened understanding of general analytic, topological and complex analytical methods. Knowledge of qualitative methods for the investigation and solution of ordinary and partial differential equations. The students understand the logical structure of the area, they are able to deduce the most important theorems and they are aware of prominent examples. Students are capable to analyze problems of the area and to identify and apply suitable methods for their solution. They can justify and clearly explain their approach.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Specialization Bachelor Geometry (Spezialisierung Bachelor Geometrie)					
Responsible for Module	onsible for Module Knut Smoczyk, Institute of Differential Geometry				
Course	Lectures that belong to this module can be found in appendix. Further courses can be assigned for this module in the university calendar .				
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination				
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h): 210				

Learning Outcomes:

In depth knowledge of the relations between algebraic, geometric, analytic and topological structures connecting geometric intuition and axiomatic foundations of the field. Students are familiar with the logical structure of the field, are able to deduce the most important statements and know illustrating examples. Students are able to analyze problems in the subject area and to indentify and apply appropriate methods to tackle given problems. The know how to justify their approach and explain it clearly.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor's Programme Mathematics

Specialization Bachelor Numerics				
Responsible for Module Sven Beuchler, Institute of Applied Mathematics				
Course	Lectures in the appendix that belong to this module. Further courses can be assigned to this module in the university c	alendar.		
Major course assessment for acquisition of LP	Course Achievement: at the instructor's option Exam Performance: oral exam			
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h):	210		

Deepened knowledge of numerical methods for approximately solving concrete mathematical problems. Students have comprehended the logical structure of the area. They are capable of deriving the most important facts and know prominent examples. Students are capable of analyzing problems in the area and to identify and apply suitable solution methods. They can substantiate their approach and explain it comprehensively.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor programme Mathematik

Specialization Bachelor Stochastics (Spezialisierung Bachelor Stochastik)					0403
Responsible for Module		Stefan Weber, Institute of Probaility and Statistics			
Course		Lectures that belong to this module can be found in appendix. Further courses can be assignedfor this module In the university calendar.			
Major course assessment for acquisition of LP		Course Achievement: at university lecturer's option Exam Performance: oral examination			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes:					

Extended knowledge of probability, statistics and their applications. Students understand the key concepts and methods of the field, are able to prove the main results and know important examples and applications. Students can analyse problems, can identify suitable methods for their solution and are able to apply them appropriately. They can justify their solutions strategies and explain them clearly.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor programme Mathematics

Seminar				
Frequency		Start all year long possible		
Responsible for Module		Institutes of mathematics		
Course (Semester Hours)		Seminar (2 SH)		
Major course assessment for acquisition of LP		Presentation with written elaboration		
Grade composition		Grade of seminar participation		
Credit Points (ECTS):	5	Study in Class (h) 30	Independent Study	(h): 120
Learning Outerman			•	

Ability of familiarization in a mathematical topic under guidance. Knowledge acquisition from partly English speaking books und professional journals. Academic writing skills. Presentation skills and use of media. Ability to discuss mathematical topics.

Topics:

Introduction to academic research and writing

- focused academic topic of mathematics after agreement with supervising tutor,
- use of specialist literature/ database;
- mathematic inscribing;
- presentation skills and use of media;

With this seminar the introduction of the bachelor thesis is getting prepared.

Reading list: variable, depends on topics of Seminars.

Recommended Prior Knowledge: variable, depends on topics of Seminars.

In-depth specialisation for a mathematical topic as part of a seminar

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Bachelor programme Mathematik

	0901			
Frequency		Start all year long possible		
Responsible for Module		Dean of Studies Office		
Course (Semester Hours)		Project "Bachelorarbeit" (13 LP)		
Major course assessment for acquisition of LP		Exam Performance: Bachelorthesis		
Grade composition		Grade of Bachelorthesis		
Credit Points (ECTS):	13	Study in Class (h) & Independent Study (h):	390	

Ability to independently work in a research topic. Knowledge acquisition from partly english speaking books and professional journals. Ability for realistic planning, timing and for conducting an academic project with the help of academic methods under guidance. Academic writing skills. Ability to discuss own thesis and self-reflection skills.

Topics:

Introduction into academic research, independent projektwork under guidance, academic writing

- a focused academic topic of mathematics after agreement with supervising tutor,
- use of specialist literature/Database;
- mathematic inscribing;
- Presentation skills and use of media;
- Planning of Bachelorthesis.

Reading list:

Recommended Prior Knowledge: Deepening of a mathematic topic in context of a seminar

Where applicable entrance requirements and/or restricted number of participants: minimum of 120 LP

Applicability:

Bachelor's Programme Mathematics

Examination procedure:

The topic of the bachelor thesis will be fixed by the examiner after consultation with examination candidate. The Issuing is to be put on record and the examination candidate as well as the Studiendekanat must be informed in written form. With the Issuing of the topic the examiner will be booked. During the making of thesis the student will be looked after by the examiner.

Modules of Master Mathematics

		Pure Mathematics 7 (Reine Mathematik 1)	I		0004
Responsible for Module		Matthias Schütt, Institu	te of Algebr	aic Geometry	
Course (Semester Hours)		A lecture with tutorial (4 + 2)		
Major course assessment for acquisition of LP		Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam			
Grade composition		Grade of oral exam or w	ritten exam		
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes:					

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

	Pure Mathematics 2	0005			
	(Reine Mathematik 2)				
Responsible for Module	Matthias Schütt, Institute of Algebraic Geometry				
Course (Semester Hours)	A lecture with tutorial (4 + 2)				
Major course assessment for acquisition of LP	Course Achievement: at university lecturer's option Exam Performance: oral examination or Exam				
Grade composition	Grade of oral exam or written exam				
Credit Points (ECTS): 10	Study in Class (h): 90 Independent Study (h):	210			
Learning Outcomes: The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.					

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Applied Mathematics					0056
(Angewandte Mathematik)					
Responsible for Module Christoph Walker, Institute of Applied Mathematics					
Course (Semester Hours)		A lecture with tutorial (4	1 + 2)		
Major course assessment for acquisition of LP		Course Achievement: at Exam Performance: oral	university le examinatio	ecturer's option n or Exam	
Grade composition		Grade of oral exam or w	ritten exam		
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes: The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire					
The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.					

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Applied Mathematics 2 (Angewandte Mathematik 2)					0057
Responsible for Module Christoph Walker, Institute of Applied Mathematics					
Course (Semester Hours)		A lecture with tutorial (4	+ 2)		
Major course assessment for acquisition of LP		Course Achievement: at t Exam Performance: oral o	university l examinatio	ecturer's option n or Exam	
Grade composition		Grade of oral exam or wr	itten exam		
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes:					

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Elective module 1					0004
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		A lecture with tutorial (4 + 2)		
Major course assessment for acquisition of LP		Course Achievement: at Exam Performance: oral	university le examinatio	ecturer's option n or Exam	
Grade composition		Grade of oral exam or w	ritten exam		
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210
Learning Outcomes: The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.					

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

• Master programme mathematics

Elective module 2					0004
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		A lecture with tutorial (4	+ 2)		
Major course assessment for acquisition of LP	Course Achievement: at u Exam Performance: oral e	niversity le xaminatior	cturer's option n or Exam		
Grade composition		Grade of oral exam or written exam			
Credit Points (ECTS):	10	Study in Class (h):	90	Independent Study (h):	210

Learning Outcomes:

The students widen their mathematic knowledge. They gain an insight into a chosen field of mathematics. They aquire the skill to deal competently with problems of that particular field.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Seminar				
Frequency		Every semester		
Responsible for Module		Dean of Studies Office		
Course (Semester Hours)		Seminar (2 Semester Hours)		
Major course assessment for acquisition of LP		Exam Performance: Seminar performance		
Grade composition		Grade of Seminar performance		
Credit Points (ECTS):	5	Study in Class (h): 30 Independent Study (h):	30	
Learning Outerman		· · · ·		

The students have the ability to independently work in a research topic. This contains especially the independent research of specialist literature for a given topic and the knowledge acquisition from specialised books and articels. Students can recognize connections in regard to content. They acquire knowledge of the English language to be able to study relevant specialist literature. The students are in the position to structure a complex topic of the modern mathematic in a suitable way and to understandable recite. They are capable of having an academic discussion and of self-reflecting.

A continuous participation is required to achieve the Learning Outcomes of the seminar.

Topics:

Depends on lecture. Current topics of different mathematic fields.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

Key Skills					0061
(Schlüsselkompetenzen)					
Frequency		Every semester			
Responsible for Module		Dean of Studies Office			
Course (Semester Hours)		Two seminars (each 2 Sei	mester Hou	ırs)	
Major course assessment for acquisition of LP		Exam Performance: Semi	nar perform	nance in every seminar	
Grade composition		Overall average grade of both seminar performances			
Credit Points (ECTS):	10	Study in Class (h):	60	Independent Study (h):	240
Learning Outerman		•		•	

The students have the ability to independently work in a research topic. This contains especially the independent research of specialist literature for a given topic and the knowledge acquisition from specialised books and articels. Students can recognize connections in regard to content. They acquire knowledge of the English language to be able to study relevant specialist literature. The students are in the position to structure a complex topic of the modern mathematic in a suitable way and to understandable recite. They are capable of having an academic discussion and of self-reflecting.

Topics:

Depends on lecture. Current topics of different mathematic fields.

Where applicable entrance requirements and/or restricted number of participants:

Applicability:

		Masterthesis (Masterarbeit)	0902
Frequency		Start all year long possible	
Responsible for Module		Dean of Studies Office	
Course (Semester Hours)		Projekt "Masterarbeit"	
Major course assessment for acquisition of LP		Course Achievement: Presentation Exam Performance: Masterthesis	
Grade composition		Grade of master thesis (Overall average grade of the two examine	er opinions)
Credit Points (ECTS):	30	Arbeitsaufwand(h): 900	

The students can independently work in a research. They are able to structure, to prepare and to undertake scientific projects under guidance. They procure an overview over the recent literature and they analyse and solve complex problems. The students can hold critical discussions about their own and external research results and interact constructive with questions and critics. They have the competence to pose self-dependent mathematical facts.

Topics:

Introduction into academic research, independent projektwork under guidance, academic writing.

- a current academic topic of mathematics after agreement with supervising tutor,
- mathematic inscribing;
- current specialist literature/Database .

Where applicable entrance requirements and/or restricted number of participants: minimum 75 LP, Completion of the module key skills

Applicability:

• Master programme mathematics

Examination procedure:

The topic of the master thesis will be fixed by the first examiner after consultation with examination candidate. The Issuing is to be put on record and the examination candidate as well as the Studiendekanat must be informed in written form. With the Issuing of the topic the first examiner and second examiner will be booked. During the making of thesis the student will be looked after by the first examiner.

Appendix: Lectures for Bachelor and Master degree programme:

Below lectures will be described that can be taken for compulsory elective modules of the Bachelorstudy and for Mastermodules.

The Lectures in **Appendix A** can be taken for the Basics modules Bachelor and in parts for the Specialization modules Bachelor. The lectures in **Appendix B** can be taken for the Mastermodules and in parts for the Specialization modules Bachelor.

The letters **P** and **A** in the upper right-hand corner of the lecture descriptions define the assignment of the lecture to the **P**ure (German: Reinen) mathematics or **A**pplied (German: Angewandten) mathematics.

Those *** seen at the Semesterweekhours (Short: Semester Hours, in german: Semesterwochenstundenzahl) and Credit Points mean that the course is offered depending on overall supply of that particular Semester as lecture with 4+2 Semester Hours/ 10 CP or with 2+1 Semester Hours/ 5 CP or if applicable as seminar. More detailed information can be found in the university calendar.

Those used abbreviation mean: IAG "Institute of Algebraic Geometry"; IAZD "Institut für Algebra, Number Theory and Discrete Mathematics"; IDG "Institute of Differential Geometry"; IfAM "Institute of Applied Mathematics"; IfMS "Institute of Probaility and Statistics".

A. LECTURES FOR BASICS MODULES BACHELOR	34
Algebra II	34
Discrete Mathematics	34
Manifolds	35
Complex Analysis	36
Numerical Mathematics II	36
Probability and Statistics II	37
Algebraic Number Theory I	38
B. LECTURES FOR MASTER MODULES	38
B.1 ALGEBRA, NUMBER THEORY AND DISCRETE MATHEMATICS:	38
Algebraic Combinatorics	38
Algebraic Number Theory II	39
Algebras and their representations	39
Analytic Number Theory I	40
Analytic Number Theory II	41
Arithmetic Geometry I	41
Arithmetic Geometry II	42
Representation theory	42
Representation theory of symmetric groups	43
Enumerative combinatorics	43
Groups and their representations	44
Homological Algebra	44
Тороlоду	45
B.2 ALGEBRAIC GEOMETRY	46
Algebraic Surfaces	46
Algebraic Geometry I	46
Algebraic Geometry II	47
Algebraic topology	47

Algorithmic Commutative Algebra	48
Coding theory	48
Plane Algebraic Curves	49
Lattices and Codes	49
Moduli Spaces	50
Singularity	50
B.3 ANALYSIS	51
Functional Analysis	51
Index theory	51
Pseudodifferential Operators	52
B.4 APPLIED ANALYSIS	53
Semigroups and Evolution Equations	53
Interpolation Theory and Applications	53
Nonlinear Functional Analysis	54
Partial Differential Equations	54
Nonlinear Partial Differential Equations	55
Qualitative Theory of Ordinary Differential Equations	55
B.5 NUMERICAL MATHEMATICS AND OPTIMIZATION	56
Intoduction to Adaptive Finite Element Method	56
hp-Finite Element Methods	56
Linear optimization	57
Multigrid and split and merge technique	57
Nonlinear optimization I	58
Nonlinear optimization II	58
Numerics for contact problems	59
Numerics for Partial Differential Equations	59
Numerical Methods in Continuum Mechanics	60
Numerical Methods for coupled and nonlinear Problems	60

Numerical methods for ordinary differential equations	61
Optimization of Partial Differential Equations	61
Scientific Computing	62
Discontinuous Galerkin Methods	62
B.6 DIFFERENTIAL GEOMETRY	63
Gauge theory	63
Classic Differential Geometry	63
Riemannian geometry	64
Differential topology	64
B.7 MATHEMATICAL STOCHASTICS	65
Asymptotic Statistics	65
Financial Mathematics 1	65
Financial Mathematics 2	66
Nonparametric Statistics	66
Actuarial Mathematics 1	67
Actuarial Mathematics 2	68
Game Theory	69
Statistical Decision Theory and Sequential Procedures	69
Statistics	70
Stochastic Analysis	70
Stochastic Simulation	71
Time Series Analysis	71
Quantitative Risk Management	72

A. Lectures for basics modules Bachelor

Algebra II				Р
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor	4+2	10	IAZD and IAG	
Frequency: annual, Summer Sem	ester			
Topics:				
 Field theory (structure of finitely generated field extensions), Galois theory, solvability of algebraic equations Modules and algebras (Noetherian rings, Hilbert's Basis Theorem, integral ring extensions, modules over principal ideal rings, Artin-Wedderburn Theorem, tensor products) Reading list: J.C. Jantzen, J. Schwermer: Algebra, Springer 2006 				
Recommended Prior Knowledge	: Algebra I			
Module affiliation:				
 Basics Bachelor Algebra, 	Number theory, Discr	rete mathematics		
Basics Bachelor Geometr	Ŷ			
Specialization Bachelor A	Algebra, Number theo	ry, Discrete mathematics	i	
 Specialization Bachelor (Geometry			

Discrete Mathematics Ρ (Diskrete Mathematik) Type of course Semester Hours Credit Points (ECTS): Responsibility Bachelor 4+2 10 IAZD Frequency: annual, Summer Semester Topics: **Enumerations and Combinatorics** • Generating functions Theory of graphs • Error-correcting codes • • Algebraic combinatorics or oriented matroids Reading list: M. Aigner: *Diskrete Mathematik* Harary: *Graphentheorie* A. Björner et al.: Oriented Matroids

Recommended Prior Knowledge: Algebra I

Module affiliation:

• Basics Bachelor Algebra, Number theory, Discrete mathematics

	Manifo	olds	
	(Mannigfalti	gkeiten)	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility
Bachelor	4+2	10	IDG
Frequency: annually, Summ	er Semester		
Topics:			
Topologische und d	ifferenzierbare Manniafa	ltiakeiten	
 Tangential- und Kor 	tangentialräume und – bi	ündel	
Differentialformen	und Vektorfelder		
 Lie-Ableitungen, Lie 	-Gruppen und -Algebren		
 Integration auf Mai 	nnigfaltigkeiten, der Satz	von Stokes	
 Vektorbündel und T 	ensorfelder		
 Zusammenhänge av 	ıf Vektorhündeln, Paralle	ltransport kovariante Ablei	tung und Holonomie
Reading list: Boothby, William M Academic Press, Inc Princeton Universit Lee, John M., Introd Verlag, New York Warner, Frank W., F Mathematics 94, Sp	1., <i>An introduction to diffe</i> 2., Orlando, FL, 1986Milno y Press luction to smooth manifo Foundations of differentia pringer-Verlag New York-	erentiable manifolds and Rig or: Topology from the Differe olds, Graduate Texts in Math ble manifolds and Lie group Berlin	emannian geometry, entiable Viewpoint, nematics 218, Springer- os, Graduate Texts in
Recommended Prior Knowl	edge: Analysis III		
Module affiliation:			
 Basics Bachelor Ana 	alysis		
Basics Bachelor Geo	ometry		
 Specialization Bach 	elor Analysis		
 Specialization Bach 	elor Geometry		
 elective module Ma 	ister Mathematik		

Complex Analysis (Funktionentheorie)				Р
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor	4+2	10	Institute for Analysi	S
Frequency: annual, Summer Sem	ester	·		
Topics:				
 Holomorphic und merom Cauchy's integral theorem Local mapping properties Residue theorem Riemann mapping theorem 	orphic functions m s of holomorphic fun em	ctions		
Reading list:				
• L. Ahlfors: Complex Anal	ysis, McGraw-Hill, N	ew York, 1978.		
• J. Conway: <i>Functions of a</i>	one Complex Variable	e, Springer-Verlag, New Yo	rk 1995.	
• W. Rudin: <i>Real and Comp</i>	olex Analysis,McGrav	v-Hill, New York, 1987.		
Recommended Prior Knowledge	: Analysis I-III			
Module affiliation:				
Basics Bachelor Analysis				

Specialization Bachelor Analysis

Numerical Mathematics II				А
(Numerische Mathematik II)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfAM	
Frequency: annually, Summer Semester				

Topics:

Numerical methods for eigenvalue problems: inverse Iteration, QR algorithm, Lanczos method. Initial value problems for ordinary differential equations: Runge-Kutta methods, adaptive stepsize control, stiff differential equations.

Reading list:

- P. Deuflhard, V. Bornemann: Scientific Computing with Ordinary Differential Equations, Springer-Verlag.
- De A. Quarteroni, R. Sacco, F. Saleri: Numerische Mathematik I and II, Springer-Verlag.

Recommended Prior Knowledge: Numerical Mathematics I

Module affiliation:

- Basics_Bachelor Numerics
- Specialization_Bachelor Numerics

For an in-depth module it can be combined with:

• all lectures for applied mathematics

or alternative lectures in agreement with examiner
	Probability and S (Mathematische St	tatistics II ochastik II)		A
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor	4+2	10	IfMS	
Frequency: annually, Winter Sem	iester			
 Topics: Measure Thoery Limit Theorems Martingales Statistics: Estimators, Co 	onfidence Sets, Statistic	cal Tests		
Reading list:				
 P. Billingsley: Probability L. Rüschendorf: Mathem Georgii, H.: Stochastik, d Jacod, J. & Protter. P: Pro 	^r and Measure, Wiley, N atische Statistik, Spring e Gruyter obability Essentials, Spr	lew York, 1995. ger, Berlin, 2014. ringer		
Recommended Prior Knowledge	: Probability and Statis	tics I		
Module affiliation:				
Basics Bachelor Stochast	ics			
 Specialization Bachelor S 	Stochastics			

B. Lectures for master modules

B.1 Algebra, Number theory and Discrete mathematics:

	Algebraic Comb	inatorics		Р
	(Algebraische Kom	binatorik)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: irregular				
Topics: In Algebraic Combinatorics, on the one hand methods from algebra, in particular group theory and representation theory, are applied towards combinatorial problems, on the other hand, combinatorial approaches are fruitfully employed in algebraic contexts. Topics in this area of interaction are in particular concerned with: • Young tableaux and partitions • symmetric functions • weighted enumeration under group actions • symmetric groups				cular
 Reading list: W. Fulton: Young Tableaux R. Stanley: Enumerative Combinatorics II R. Stanley: Algebraic Combinatorics Recommended Prior Knowledge: Algebra I, Basics of combinatorics Module affiliation: Specialization Bachelor Algebra, Number theory, Discrete mathematics Elective Modules of Master Mathematics For an in-depth module it can be combined with e.g.: Enumerative combinatorics_Representation theory				
	Algebraic Numb	er Theory I		Р
	(Algebraische Zah	lentheorie I)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: every other year, Wir	iter Semester			
Topics: Introduction to algebraic number arithmetic of algebraic r zeta- and L-series Reading list: Neukirch: Algebraische 2 Recommended Prior Knowledge	r theory, detailed treat number fields Zahlentheorie : Algebra II	tment of the following top	ics:	
Module affiliation: • Specialization Bachelor	Algebra, Number theo	ry, Discrete mathematics		

• Elective module master Mathematics

Algebraic Number Theory II				Р
	(Algebraische Zahle	entheorie II)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: every other year, Summer Semester				
 Topics: Advanced treatment of algebraic number theory via one or more of the following topics: p-adic number fields class field theory algorithmic problems 				
Reading list:				
 Neukirch: Algebraische Zahlentheorie Cohen: Topics in Computational Algebraic Number Theory 				
Recommended Prior Knowledge: Algebraic Number Theory I				
Module affiliation: • Specialization Bachelor / • Elective module master I	Algebra, Number theo Vathematics	ry, Discrete mathematics		

Elective module master Mathematics ٠

А	lgebras and their re	epresentations		Р
	(Algebren und ihre D	arstellungen)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: irregular				
Topics:				
 An example-driven introduction representations of quivers. Representations of finite theorem; representation categories and functors; Representations of quive functors; Gabriel's theorem 	to the representation Fopics covered include e-dimensional algebra type; projective and i Ext-functors. ers: hereditary algebra em on the representa	theory of finite-dimension e: s: indecomposable module njective modules; introduc is; quadratic forms associa tion type of quivers; Dynkii	al algeoras and to s and the Krull-Schm tion to the language ted to quivers; reflect n diagrams.	idt of ion
Reading list:	ehras and Representa	ition Theory Springer Unde	eraraduate Mathemat	ics
Series. Springer. 2018.	corus una nepresenta	alon meory, springer onde		
Assem, D. Simson, A. Sko Techniques of Represente University Press,2006.	wronski: Elements of ation Theory, London	the Representation theory Mathematical Society Stud	of Associative Algebra lent Texts 65, Cambrid	<i>as 1:</i> dge
Recommended Prior Knowledge theory.)	: (Einführung in die) [Darstellungstheorie (A first	course on representa	tion
Module affiliation:				
Specialization Bachelor	Algebra, Number theo	ry, Discrete mathematics		
 Elective module master I 	Mathematics			

Analytic Number Theory I				
	(Analytische Zah	lentheorie I)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+2	5	IAZD	
Frequency: every other year, Win	iter Semester			
Topics: Introduction to analytic number Arithmetic functions, Dirichlet se number theorem, introduction to Reading list: J. Brüdern, Einführung in H. Davenport, Multiplica H.L. Montgomery and R. University Press, 2007.	theory, in particular: ries, Perron's formula sieve methods n die analytische Zahl tive Number Theory, S C.Vaughan, Multiplica	, analytic properties of the entheorie, Springer-Verlag Springer-Verlag, 2000. ative Number Theory, I. Cla	zeta function, prime , 1995. Issical Theory, Cambri	dge
Recommended Prior Knowledge: Complex Analysis				
 Specialization Bachelor A Elective module master N In each case it can be combined particular: Analytic Number theo 	Algebra, Number theo Mathematics with lectures of Algeb ry II) or Analysis or al	ry, Discrete mathematics ora, Number theory, Discret ternative lectures in agree	te mathematics (in ment with examiner.	

Analytic Number Theory II				
	(Analytische Zahle	entheorie II)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+2	5	IAZD	
Frequency: every other year, Sun	nmer Semester			
Topics: Advanced treatment of analytic number theory. Possible topics include the the Bombieri-Vinogradov theorem, Tauberian theorems, mean values and distributions of additive and multiplicative functions, applications of the Selberg-Delange and of the saddle point method.				
 Reading list: J. Brüdern, Einführung in die analytische Zahlentheorie, Springer-Verlag, 1995. H. Davenport, Multiplicative Number Theory, Springer-Verlag, 2000. H.L. Montgomery and R.C.Vaughan, Multiplicative Number Theory, I. Classical Theory, Cambridge University Press, 2007. G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge University Press, 1995. 				lge V
Recommended Prior Knowledge	Complex Analysis, A	nalytic Number Theory I		
In each case it can be combined with lectures of Algebra, Number theory, Discrete mathematics (in particular: Analytic Number theory I) or Analysis or alternative lectures in agreement with examiner				
 Module affiliation: Specialization Bachelor A Elective module master I 	Algebra, Number theo Mathematics	ry, Discrete mathematics		

Arithmetic Geometry I				
	(Arithmetische G	Geometrie I)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: every other year, Win	iter Semester			
 Topics: Introductory course in arithmetic geometry, based on one of the following topics: curves over finite fields elliptic curves Reading list: Lorenzini: An Invitation to Arithmetic Geometry Silverman: The Arithmetic of Elliptic Curves 				
Recommended Prior Knowledge: Algebra II				
Module affiliation:				
Specialization Bachelor A	Algebra, Number theo	ry, Discrete mathematics		
Elective module master	Mathematics			

Arithmetic Geometry II				Р
	(Arithmetische G	eometrie II)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Master	4+2	10	IAZD	
Frequency: every other year, Sun	nmer Semester	·		
Topics: Advanced course on one of the following topics: • modular forms and modularity • diophantine geometry • arithmetic fundamental groups				
Reading list: Diamond, Shurman: A first course in modular forms Hindry, Silverman: Diophantine Geometry				
Recommended Prior Knowledge	: Arithmetic Geometry	y I or Algebraic Geometry		
Module affiliation: • Elective module mas	ter Mathematics			

Representation theory				Р
(Darstellungstheorie)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor und Master	4+2	10	IAZD	
Frequency: every other year, Winter Semester				

Topics:

The course provides an introduction into the theory of semisimple (associative) algebras, with a focus on group algebras and characters. Central topics are

- Modules and representations of groups and algebras (simple and semisimple modules, composition series, indecomposable modules, semisimple algebras, Jacobson radical, Artin-Wedderburn decomposition, Maschke's Theorem)
- Fundamentals of the character theory of finite groups (irreducible characters, inner product for characters, orthogonality relations, computation of character tables, tensor products and products of characters)

Reading list:

- G. James, M. Liebeck: *Representations and Characters of Groups*, Cambridge University Press, 2001 (2nd Edition).
- 🛄 J. Jantzen, J. Schwermer: Algebra

Recommended Prior Knowledge: Algebra I is necessary, Algebra II is desirable

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Repres	sentation theory of	symmetric groups		D
(Dars	tellungstheorie symm	etrischer Gruppen)		ſ
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: every other year, Wir	iter Semester	·		
Topics: Topics both from ordinary and me particular: • classification and proper • symmetric functions • permutation modules an • representations in positive modules	odular representation ties of the irreducible d Specht modules ve characteristic: simp	theory of symmetric group characters of the symmet ple modules and the decon	ps are covered, in ric groups nposition of Specht	
 Reading list: G. James, A. Kerber: The Representation Theory of the Symmetric Group B. Sagan: The Symmetric Group R. Stanley: Enumerative Combinatorics II Recommended Prior Knowledge: Representation theory is necessary, Groups and their representations is				s is
Module affiliation: • Specialization Bachelor / • Elective module master I	Algebra, Number theo Mathematics	ry, Discrete mathematics		

Enumerative combinatorics				Р
	(Enumerative Kom	ibinatorik)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor	4+2	10	IAZD	
Frequency: irregular				
Frequency: irregular Topics: • generating functions for weighted combinatorial objects • bijective combinatorics • constructive combinatorics Reading list: Image: R. Stanley: Enumerative Combinatorics I, II Image: D. Stanton, D. White: Constructive Combinatorics Recommended Prior Knowledge: Algebra I Module affiliation:				
Specialization Bachelor <i>I</i>	Algebra, Number theo	ry, Discrete mathematics		

Groups and their representations (Gruppen und ihre Darstellungen)				Р	
Type of course	Semester Hours	Credit Points (ECIS):	Responsibility		
Bachelor and Master	4+2	10	IAZD		
Frequency: every other year, Sun	nmer Semester				
Topics:	Topics:				
Structure of finite groups and the	eir ordinary and modu	lar representations; in par	ticular, the topics are	:	

- continuation of the theory of complex characters: induced characters, Frobenius reciprocity, Mackey's Theorem, character degrees and character values
- structure of groups: Sylow's theorems, solvable groups, Burnside's p^aq^b Theorem
- modular representation theory: indecomposable representations, projective and simple modules, induced representations, decomposition numbers, blocks of representations

Reading list:

G. James, M. Liebeck: *Representations and Characters of Groups* H. Nagao, Y. Tsushima: *Representations of finite groups*

Recommended Prior Knowledge: Algebra II, Representation theory

- Specialization Bachelor Algebra, Number theory, Discrete mathematics
- Elective module master Mathematics

Homological Algebra				Р
	(Homologische	Algebra)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Master	4+2	10	IAZD	
Frequency: irregular		·		
Topics:				
Exact sequences; groups of homo and flat modules; categories and cohomology of complexes; projec and applications. Reading list: Rotman: An Introduction Weibel: An introduction	omorphisms; tensor pr functors; chain comp etive and injective res to to Homological Algebr to homological algebr	oducts of modules over rid lexes and cochain comple olutions; derived functors; bra (Second Edition) Ta	ngs; projective, injecti xes; homology and Ext-functors; Tor-fun	ve
Recommended Prior Knowledge	: Algeora II			
Elective module master l	Mathematics			

Тороlоду				
	(Topolog	gie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAZD	
Frequency: irregular				
Topics:				
 Topological spaces, conti connected spaces, separa compactness constructions (products, homotopy of maps fundamental groups coverings 	inuous maps ation axioms quotients)			
Reading list:				
Module affiliation:				
• Specialization Bachelor	Algebra, Number theo	ry, Discrete mathematics		

B.2 Algebraic Geometry

Algebraic Surfaces				Р
	(Algebraische	Flächen)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Master and GRK	***	***	IAG	
Frequency: every 2 to 3 years, Su	immer Semester			
Topics:				
 birational maps between 	n surfaces			
 intersecton theory 				
Kodaira classification				
Reading list:				
Beauville: Complex algeb	praic surfaces, CUP, 19	983.		
Recommended Prior Knowledge: Algebraic Geometry, helpful: Algebra II				
Module affiliation:				
Elective module master I	Vathematics			

Algebraic Geometry I (Algebraische Geometrie I)			Р	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor, Master and GRK	4+2	10	IAG	
Frequency: annual, Winter Seme	ster		·	
 Topics: affine and projective varieties morphisms and rational maps dimension, degree, smoothness, singularities sheaves and schemes 				
Recommended Prior Knowledge: Algebra I; helpful: Algebra II, Complex analysis				
Module affiliation: • Specialization Bachelor (• Elective module master I	Geometry Mathematics			

Algebraic Geometry II				Р
	(Algebraische G	eometrie II)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor, Master and GRK	4+2	10	IAG	
Frequency: annual, Summer Sem	lester			
Topics: Key terms of modern algebraic geometry (schemes, sheaf cohomology, divisors) are introduced. Applications for the classification of algebraic curves and surfaces are presented.				
Module affiliation: • Specialization Bachelor (• Elective module master I	Geometry Mathematics			

Algebraic topology				Р
	(Algebraische 7	Topologie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IAG	
Frequency: irregular				
Topics: homology theory, singular homology, cell complex cohomology theory Poincaré duality Recommended Prior Knowledge: Algebra I, helpful: Algebra II				
 Module affiliation: Specialization Bachelor Geometry Specialization Bachelor Algebra, Number theory, Discrete mathematics Elective module master Mathematics 				

Algorithmic Commutative Algebra				Р
(Algorithmische Kommutative Algebra)				
Type of courseSemester HoursCredit Points (ECTS):Responsibility				
Bachelor and Master	4+2	10	IAG	
Frequency: irregular				
Topics: Polynomial systems Groebner Bases, syzygies, free resolutions Dimension, integral closure, primary decomposition Recommended Prior Knowledge: Algebra I: helpful: Algebra II				
 Module affiliation: Specialization Bachelor Algebra, Number theory, Discrete mathematics Specialization Bachelor Geometry Elective module master Mathematics 				

Coding theory				Р
	(Codierungst	heorie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2 (2+1)	10 (5)	IAG	
Frequency: irregular				
Topics: linear codes special good codes decoding cyclic codes Recommended Prior Knowledge:	Algebra I			
Module affiliation:				
 Specialization Bachelor A Specialization Bachelor G Elective module master M 	Algebra, Number theo Beometry Aathematics	ry, Discrete mathematics		

Plane Algebraic Curves				Р
(Ebene Algebraische Kurven)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsib	ility
Bachelor and Master, also Teaching profession	2+1	5	IAG	
Frequency: irregular	·			
Topics: • Intersection of plane curves, Bezout theorem • Tangents, points of inflection, smoothness and singularities • Polar curve, Hesse curve, dual curve, Plücker formulae Recommended Prior Knowledge: Algebra I				
Module affiliation:				
Specialization Bachelor Geometry				
Elective module master Mathemati	cs			

Lattices and Codes				Р
	(Gitter und Codes)			
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	/
Bachelor and Master	4+2	10	IAG	
Frequency: irregular				
 Topics: Integral lattices Linear codes Weight enumerators and theta functions Reading list: W.Ebeling: Lattices and Codes, 3. Auflage, Springer, 2013. 				
Recommended Prior Knowledge: Algebra I, Complex analysis				
 Module affiliation: Specialization Bachelor Geometry Specialization Bachelor Algebra, Number theory, Discrete mathematics Elective module master Mathematics 				

Moduli Spaces				Р
	(Modulräume)			
Type of course	Semester Hours	Credit Points (ECTS):	Responsibili	ty
Master and GRK	***	***	IAG	
Frequency: every 2 to 3 years, Summer Ser	nester			
 Topics: Moduli problems, coarse and fine moduli spaces Construction of moduli spaces, geometric invariant theory Examples of moduli spaces, in particular moduli of curves 				
Recommended Prior Knowledge: Algebra II, Algebraic Geometry				
Module affiliation:				
Elective module master Mathemat	ics			

Singularity				
	(Singularitäten)			
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	y
Master and GRK	4+2	10	IAG	
Frequency: irregular				
Topics:				
 Holomorphic functions of several v Analytic set germs Unfoldings and deformations Classification of singularities Reading list: W. Ebeling: <i>Funktionentheorie</i>, <i>Difference</i> 	rariables ferentialtopologie u l	nd Singularitäten, Viewe	g, 2001.	
Module affiliation: • Elective module master Mathemati	ics			

B.3 Analysis

Functional Analysis (Funktionalanalysis)				P/A
Type of course	(Funktionala)	Credit Points (ECTS)	Responsibility	
Bachelor and Master	4+2	10	Bauer, Escher, Schroh Walker	e,
Frequency: annual				
 Baire's theorem Hahn-Banach theorem, of Principle of uniform bou Open mapping theorem, Linear operators in Hilbe Compact operators Unbounded operators Recommended Prior Knowledge	convexity ndedness closed graph theore rt space : Analysis I-III, Linea	m ar Algebra I		
Specialization Bachelor A elective module Master I	Analysis Mathematik			

Index theory				Р
	(Indextheo	rie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	Schrohe	
Frequency: irregular				
Topics:				
 Fredholm operators in Ba Spectral theory of compa Components of the Fredh Toeplitz operators and the Computation of the inde Pseudodifferential opera Fedosov's index formula 	anach spaces act operators and the nolm operators in Hilb neir index x via the operator tra tors	Fredholm alternative pert spaces ce		
Recommended Prior Knowledge	: Analysis I-III, Linear	Algebra I, Functional Ana	alysis	
Specialization Bachelor A	Analysis			
elective module Master I	Mathematik			

Pseudodifferential Operators (Pseudodifferentialoperatoren)				P/A	
Type of course	Semester Hours	Credit Points (FCTS)	Responsibility		
Bachelor and Master	2+1	5	Bauer, Escher, Schrohe, Walker		
Frequency: irregular					
Topics:					
 Fourier transform Tempered distribution Sobolev spaces Oscillatory integrals Symbol classes Continuity properties Ellipticity and parame Operators on manifol Wave front sets 	and calculus etrix construction ds				
Recommended Prior Knowled	Recommended Prior Knowledge: Analysis I-III, Lineare Algebra I, Functional Analysis				
Specialization Bachel elective module Mast	or Analysis er Mathematik				

B.4 Applied Analysis

Semigroups and Evolution Equations				P/A
(Ha	Ibgruppen und Evolut	tionsgleichungen)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	·
Bachelor and Master	4+2	10	Escher, Walker	
Frequency: every 1 to 2 years				
Topics:				
 closed operators in Bana strongly continuous and generators of semigroup: characterization theoren semilinear Cauchy proble fractional powers of ope maximal regularity 	ch spaces analytic semigroups s ns ems rators			
Recommended Prior Knowledge	: Analysis I-III, Linear	Algebra I and II		
Module affiliation:				
Specialization Bachelor /	Analysis			
Elective module master I	Vathematics			

Interpolation Theory and Applications				P/A
(Int	erpolationstheorie ur	nd Anwendungen)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Escher, Walker	
Frequency: irregular				
Topics:				
 real and complex interpolation method reiteration and duality theorems interpolation of Lebesgue and Sobolev spaces fractional powers of operators interpolation theory for elliptic boundary value problems applications to semigroup theory 				
Module affiliation:				
Specialization Bachelor A	Analysis			
 Elective module master N 	<i>l</i> lathematics			

Nonlinear Functional AnalysisF(Nichtlineare Funktionalanalysis)				P/A
	(Nichtlineare Fur	iktionalanalysis)	1	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Escher, Walker	
Frequency: every 1 to 2 years				
 Topics: implicit function theo degree theory bifurcation theory 	orem in Banach space	S		
Recommended Prior Knowled	dge: Analysis I-III, Lin	eare Algebra I and II		
Module affiliation: • Specialization Bachel • Elective module mast	or Analysis er Mathematics			

Partial Differential Equations (Partielle Differentialgleichungen)				P/A
Turne of course	(Partielle Differer	Credit Points (ECTS)	Posponsibility.	
Type of course				
Bachelor and Master	4+2	10	Bauer, Escher, Schrohe,	
			Walker	
Frequency: annual				
Topics:				
 method of characteri distribution theory Laplace's equation, m Sobolev spaces variational methods Fourier transform wave equation heat equation 	stics naximum principles			
Recommended Prior Knowled	dge: Analysis I-III, Lin	ear Algebra I and II		
Module affiliation:				
Specialization Bachel	lor Analysis			
 Elective module mast 	ter Mathematics			

Nonlinear Partial Differential Equations				P/A
(Nicht	tlineare partielle Diffe	erentialgleichungen)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Master	4+2	10	Escher, Walker	
Frequency: irregular				
Topics: nonlinear elliptic and part fixed point methods variational methods compactness methods monotone operators	rabolic equations			
Recommended Prior Knowledge: Partial Differential Equations I Module affiliation:				
 Specialization Bachelor A Elective module master N 	Analysis Vlathematics			

Qualitative Theory of Ordinary Differential Equations				P/A
(Qualitative Theorie gewöhnlicher Differentialgleichungen)				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Escher,Walker	
Frequency: annual				
Topics:				
 dynamical systems invariant sets limit sets stability and linearizatio periodic solutions 	n principles			
Recommended Prior Knowledge	: Analysis I-III, Linea	ar Algebra I and II		
Specialization Bachelor Elective module master	Analysis Mathematics			

B.5 Numerical Mathematics and Optimization

Intoduction to Adaptive Finite Element Method				A
(Einführu	ing in die Adaptive Fir	nite-Elemente-Methode)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: every 2 to 3 years				
Topics: adaptive mesh refinement A posteriori error analys error estimators: (e.g. resonance) convergence	nt for FEM is sidual)			
 Reading list: Ainsworth/Oden: A posteriori error estimation in finite element analysis. Wiley 2000. Nochetto/Siebert/Veeser: Theory of adaptive finite element methods: an introduction. In: Multiscale, nonlinear and adaptive approximation, 409–542, Springer, 2009. Recommended Prior Knowledge: Numerical Mathematics I and Numerics for Partial Differential Fourtiens. 				
 Module affiliation: Specialization Bachelor Elective module master 	Numerics Mathematics			

hp-Finite Element Methods				A
	(hp-Finite Element	t Methoden)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: regularly every 1 to	2 years			
Topics: Error reduction by mesh Proof of exponential con Proof of exponential con Application to mechanic Adaptive methods New developments in ne Reading list: Standard literature, lect Recommended Prior Knowledge Equations Module affiliation: Specialization Bachelor Num	refinement and incre nvergence in FEM nvergence ini Gauß qu cs and electrodynamic umerical analysis ure notes e: Numerical Mathem	asing degree of polynom uadrature s	ial Partial Differential	

Linear optimization				A
	(Lineare Optir	nierung)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	Steinbach	
Frequency: regularly every 2 to 3	3 years			
Frequency: regularly every 2 to 3 years Topics: • Simplex method • Theory of polyhedra • Farkas lemma and extensions • Duality theory Reading list: • V. Chvátal: Linear Programming Recommended Prior Knowledge: Numerical Mathematics I, Algorithmic programming				
Specialization Bachelor	Numerics			

Multigrid and split and merge technique				Α	
(Multigrid und Gebietszerlegung)					
Type of course Semester Hours Credit Points (ECTS): Responsibility					
Bachelor and Master	2+1	5	IfAM		
Frequency: regularly every 1 to 2	2 years				
Topics:					
Preconditioned iterative	methods (Richardso	n, Jacobi)			
• Multigrid (for finite diffe	erence and finite ele	ment methods)			
Multilevel methods (add	itive and multiplicat	ive Schwarz methods)			
Domain decomposition methods (Schwarz alternating method)					
Reading list:					
🛄 Standard literature, lect	ure notes				
Recommended Prior Knowledge	Recommended Prior Knowledge: Numerical Mathematics I				
Module affiliation:					
Specialization Bachelor	Numerics				

Nonlinear optimization I			A	
	(Nichtlineare Op	timierung I)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Steinbach	
Frequency: regularly every 2 to 3	3 years			
Topics: • Steepest descent metho • Theory of constrained of • Quadratic optimization: • Maratos effect, merit fu Reading list:	d, Newton's method, I otimization: KKT cond KKT factorizations, ac nctions, SQP method umerical Optimization : Numerical Mathema Numerics	ine search, trust region itions, tive set method n, 2nd ed. atics I and II, Algorithmic p	programming	

Nonlinear optimization II (Nichtlineare Optimierung II)				A
Type of course		Credit Points (ECTS).	Responsibility	
Respector and Master			Stoiphoch	
	4+2	10	Steinbach	
Frequency: regularly every 2 to 3	3 years			
Topics:				
 Nonlinear CG method Techniques for high dimension models Interior point methods Further topics 				
J. Nocedal, S. Wright: IVL	imerical Optimization	, 2 nd ed.		
Recommended Prior Knowledge	: Nonlinear optimizat	ion I		
Module affiliation:				
 Specialization Bachelor I 	Numerics			

Numerics for contact problems				
	(Numerik für Kor	ntaktprobleme)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: regularly every 1 to 2	2 years			
Topics:				
 Existence and uniqueness of solutions for elliptic contact problems Variational inequalities, mixed formulations Penalty methods Iterative algorithms: Uzawa, Semi-smooth Newton's method Mulitfield problems (Mehrfeldprobleme), coupling with heat equation Reading list: Image: Standard literature, lecture notes Becommended Prior Knowledge: Numerical Mathematics Land Numerics for Partial Differential				
Equations				
Specialization Bachelor	Numerics			
	numenes			

Numerics for Partial Differential Equations				А
(Numerik partieller Differentialgleichungen)				
Type of courseSemester HoursCredit Points (ECTS):Responsibility				
Bachelor and Master	4+2	10	IfAM	
Frequency: regularly every 1 to 2	years			
Topics:				
 Galerkin method for elliptic boundary value problems Finite element spaces A-posteriori error estimation Methods for parabolic and hyperbolic differential equations 				
Reading list:				
Recommended Prior Knowledge: Numerical Mathematics I and II				
Module affiliation:				
Specialization Bachelor N	Numerics			

Numerical Methods in Continuum Mechanics				
(Numerische Methoden der Kontinuumsmechanik)				
Type of courseSemester HoursCredit Points (ECTS):Responsibility				
Bachelor and Master	4+2	10	IfAM	
Frequency: regularly every 1 to 2	years			
Topics:				
 Modelling: linear elasticity and fluid dynamics Discretization: mixed finite elements error estimates for Stokes Reading list: Brezzi/Fortin: Mixed and hybrid finite element methods. Springer 1991 				
Recommended Prior Knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations				
Module affiliation:				
Specialization Bachelor I	Numerics			
Elective module master I	Mathematics			

Numerical Methods for coupled and nonlinear Problems				А	
(Numerische M	ethoden für gekoppel [.]	te und nichtlineare Probleme	<u>e)</u>		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility		
Bachelor and Master	4+2	10	IfAM		
Frequency: every 3 to 4 years					
Topics:					
 Classification into nonlin Regularisation, time and Nonlinear and linear solv Adaptivity and inexacted 	ear and coupled prob space discretization vers solvers	lems			
Reading list: Wick: Numerical method <u>https://www.ifam.uni-ha</u> Glowinski: Numerical me	ls for nonlinear and co nnover.de/2120.html athods for nonlinear ve	oupled PDEs, Vorlesungsskrip ariational problems. Springer	tum, available online ^r 1984.	e	
Recommended Prior Knowledge	Recommended Prior Knowledge: Numerical Mathematics I and Numerics for Partial Differential				
Module affiliation:					
 Specialization Bachelor I Elective module master I 	Numerics Mathematics				

Numerical methods for ordinary differential equations				А
(Numerische I	Methoden für gewöhi	nliche Differentialgleichung	gen)	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular				
Topics:				
 One step methods Stability Differential-algebraic eq Galerkin-method Shot methods Variational methods Reading list: Annacher: Einführung interpretein int	uations n die Numerische Ma	<i>thematik</i> , Heidelberg Unive	rsity Publishing, 2017	
Kecommended Prior Knowledge	: Numerical Mathema	atics I and II		
Specialization Bachelor I	Numerics			
Elective module master I	Vathematics			

Optimization of Partial Differential Equations				A	
(Optimi	erung mit partiellen D)ifferentialgleichungen)			
Type of course	Type of course Semester Hours Credit Points (ECTS): Responsibility				
Bachelor and Master	2+1	5	IfAM		
Frequency: irregular					
Topics:	control problems				
 Enter-quadratic optimal control problems Existence and uniqueness adjoinded state 					
 Diskretization and optimization: FEM 					
Reading list:					
Troeltzsch: Optimal cont	rol of partial different	ial equations. AMS, 2010			
Recommended Prior Knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations					
Module affiliation:					
Specialization Bachelor N	lumerics				
Elective module master N	Mathematics				

Scientific Computing				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular	•			
Topics:				
 Numerical algorithms and their parallelization Reading list: Bastian: Lecture notes on parallel solution of large sparse linear system, Vorlesungsskriptum, IWR Heidelberg, April 2018. Recommended Prior Knowledge: Numerical Mathematics I and Numerics for Partial Differential Equations 				VR
Module affiliation:				
Specialization Bachelor	Numerics			
Elective module master	Mathematics			

Discontinuous Galerkin Methods				А
	(Unstetige Galerl	kinverfahren)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	•
Bachelor and Master	2+1	5	IfAM	
Frequency: irregular				
Topics:				
 Basis ideas DG for stationry advection DG for nonstationary PD DG for elliptic problems Reading list: Ern/di Pietro: Mathematication 	on (flows, upwinding E's of first order (SIP) <i>ical aspects of disco</i>	g) ntinuous Galerkin methods.	Springer 2012.	
Recommended Prior Knowledge: Numerical Mathematics I and Numerics for Partial Differential Fouations				
Module affiliation:				
Specialization Bachelor	Numerics			
Elective module master l	Vathematics			

B.6 Differential Geometry

Gauge theory			Р	
	(Eichfeldth	eorie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Master	2+2	5	IDG	
Frequency: irregular				
Topics: Zusammenhänge auf Hauptfaserbündeln und deren Krümmung, Eichtransformationen, Yang-Mills- Funktional und Yang-Mills-Gleichung, selbstduale und invariante Zusammenhänge, nichtminimale Yang- Mills-Zusammenhänge, magnetische Monopole und Wirbel				ıg-
Recommended Prior Knowledge: Differential Geometry/Analysis				
Module affiliation: • Elective module master I	Mathematics			

Classic Differential Geometry			Р	
	(Klassische Differei	ntialgeometrie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IDG	
Frequency: irregular				
 Topics: Kurven: Bogenlänge, Krümmung und Torsion, Hauptsatz, Windungszahl, Umlaufzahl, Hopfscher Umlaufsatz, isoperimetrische Ungleichung, Vierscheitelsatz, Frenet-Kurven, Satz von Fenchel 				
 Flächen: reguläre Flächen, Parameterwechsel, Tangentialraum, Differential, erste Fundamentalform, Orientierbarkeit, Gauß-Abbildung, Weingarten-Abbildung, zweite Fundamentalform, Hauptkrümmungen, mittlere Krümmung, Gauß-Krümmung Innere und äußere Geometrie: Isometrien, Vektorfelder und kovariante Ableitung, Christoffel- 				

Symbole, Koszul-Formel, Krümmungstensor, Gauß-Gleichungen, TheoremaEgregium, Geodätische, Exponentialabbildung, geodätische Polarkoordinaten, Gauß-Lemma, sphärische und hyperbolische Geometrie

Recommended Prior Knowledge:

- Specialization Bachelor Geometry
- Elective module master Mathematics

Riemannian geometry				Р
	(Riemannsche G	Geometrie)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IDG	
Frequency: every 1 to 3 years, W	inter Semester	·		
Topics: Riemannsche Metriken, Geodäten, Exponentialabbildung, Injektivitätsradius, Krümmung eines Zusammenhangs, erste und zweite Variation der Energie einer Kurve, Existenz geschlossener Geodäten, Satz von Synge, konjugierte Punkte, Jacobi-Felder, Vergleichssätze von Rauch, symmetrische und lokal symmetrische Räume Recommended Prior Knowledge: Differential Geometry/Analysis				
Module affiliation: • Specialization Bachelor (• Elective module master	Geometry Mathematics			

Differential topology (Differentialtopologie)				Р
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility:	
Master and GRK	2+2	5	IDG	
Frequency: irregular				
Topics: • Differentiable manifolds and maps • tangent bundles, vector fields • dynamical systems • morse theory				
Recommended Prior Knowledge: Analysis III				
Module affiliation:				
Elective module master	Mathematics			

B.7 Mathematical Stochastics

Asymptotic Statistics				
	(Asymptotische	Statistik)		Α
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	
Frequency: irregular				
Topics:				
 contiguous distributions 				
 local asymptotic normali 	ty			
 limit experiments 				
 asymptotically optimal t 	ests			
 asymptotic efficiency of estimators and tests 				
Reading list:	ic Statistics, Cambrid	ge University Press, Camb	oridge, 1998.	
Recommended Prior Knowledge: Probability and Statistics II				
Module affiliation:				
Specialization Bachelor S	Stochastics			
Master elective module				

Financial Mathematics 1				
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual			·	
Topics:				
Arbitrage Pricing Theory				
Preferences and Utlity				
Opimality and Equilibriu	m			
Risk Measures				
Reading list:				
H. Föllmer& A.Schied: St	ochastic Finance, de	Gruyter, Berlin/New York,	2016.	
Recommended Prior Knowledge	: Probability and Stat	tistics II		
Module affiliation:				
Specialization Bachelor S	Stochastics			
Master elective module				

Financial Mathematics 2				А
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual		•		
Topics:				
Introduction to Stochastic Analysis				
 Einanaial Mathematics in 	- Continuous Timos D	ringing and Hadging of Ei	noncial Darivativas (Equ	it.

• Financial Mathematics in Continuous Time: Princing and Hedging of Financial Derivatives (Equity Derivatives, Interest rate Derivatives, and Credit Derivatives), Optimal Investment

Reading list:

M. Musiela& R.Rutkowski: *Martingale Methods in Financial Modelling*, Springer, 2005.

Recommended Prior Knowledge: Probability and Statistics II, Financial Mathematics 1, possibly Stochastic Analysis

- Specialization Bachelor Stochastics
- Master elective module

Nonparametric Statistics				A
	(Nichtparametriso	che Statistik)		
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	
Frequency: irregular		·		
Topics:				
• order and rank statistics				
distribution free confider	nce regions			
 locally best rank tests 				
• empirical distributions				
• tests for goodness of fit				
nonparametric multivaria	ate procedures			
GrundlegendeLiteratur: I. Hajek, Z. Sidak, P. K. Sen: Theory of Rank Tests, Academic Press, 1999.				
Recommended Prior Knowledge: Probability and Statistics II				
Module affiliation:				
Specialization Bachelor S	Stochastics			
Master elective module				

	Actuarial Math	nematics 1		A
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual				
Topics: Individual and Collective Ruin Theory Premium Calculation Incurred But Not Reporte Risk Sharing and Reinsur Interest Rates and Fixed Cash Flows and Mathem Difference Equations and Hattendorf's Theorem Unit-linked policies Policies with Stochastic Market-Consistent Valua	ed Claims rance Income atical Reserve Differential Equatio Interest Rate	ns		
Reading list: IIII T. Mack: Schadenversich K. Schmidt: Versicherung	erungsmathematik, V gsmathematik, Spring	VW Karlsruhe, 2002. er, 2006.		
M. Koller: Stochastische R. Norberg: Basic Life Ins Recommended Prior Kno	Modelle in der Lebens surance Mathematics owledge: Probability	sversicherungsmathemat , LSE, 2002. and Statistics II	ik, Springer, 2000.	
Module affiliation: • Specialization Bachelor S • Master elective module	Stochastics			

	Actuarial Math	ematics 2		A
Type of course Bachelor and Master	Semester Hours 4+2	Credit Points (ECTS): 10	Responsibility Weber	
Frequency: annual				
Topics: Individual and Collece Ruin Theory Premium Calculation Incurred But Not Rep Risk Sharing and Rei Interest Rates and Fi Cash Flows and Mat Difference Equations Hattendorf's Theorer Unit-linked policies Policies with Stochar Market-Consistent V	ctive model ported Claims nsurance xed Income hematical Reserve and Differential Equa n stic Interest Rate Yaluation	ations		
The lecture is split in Actuarial M Reading list: T. Mack: Schadenversich K. Schmidt: Versicherung M. Koller: Stochastische R. Norberg: Basic Life Ins Recommended Prior Knowledge	athematics I and Actu erungsmathematik, V gsmathematik, Spring Modelle in der Lebens surance Mathematics, : Probability and Stati	uarial Mathematics 2. VW Karlsruhe, 2002. er, 2006. sversicherungsmathemati LSE, 2002. istics II, Actuarial Mathe	<i>ik</i> , Springer, 2000. ematics I	
 Module affiliation: Specialization Bachelor S Master elective module 	Stochastics			

	Game Th	eory		
	(Snielther	, prie)		Δ
Type of course	Semester Hours	Credit Points (FCTS)	Responsibility	1
Bachelor and Master	2+1	5	IfMS	
Frequency: irregular	211			
Topics:				
 normal form of n-person 	games			
• points of equilibrium	5			
 mixed extensions 				
• two-person zero sum gai	mes			
 minimax theorems and n 	ninimax strategies			
 matrix games 	5			
 cooperative games 				
Shapley value				
Reading list:				
📖 F. Forgo, J. Szep, F. Szida	rovszky: Introduction	to the Theory of Games: (Concepts, Methods,	
Applications, Kluwer, Do	rdrecht, 1999.			
Recommended Prior Knowledge	: Probability and Stat	istics II		
Module affiliation:				
 Specialization Bachelor S 	Stochastics			
 Master elective module 				

Statistical Decision Theory and Sequential Procedures (Statistische Entscheidungstheorie und Sequentialverfahren)			A	
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	
Frequency: irregular				
Topics:				
 decision kernels 				
Bayes and minimax proce	edures for estimation	and testing		
 minimax theorems 				
 optimal stopping 				
 sequential Bayes procedu 	ires			
 sequential likelihood rati 	o tests			
• optimal sequential tests				
Reading list: Irle: Sequentialanalyse: (H. Strasser: Mathematic	Dptimale sequentielle al Theory of Statistics	<i>Tests</i> , Teubner, Stuttgart, , de Gruyter, Berlin, 1985	. 1990.	
Recommended Prior Knowledge: Probability and Statistics II				
Module affiliation:				
Specialization Bachelor S	Stochastics			
Master elective module				

Statistics				
	(Statistische	Verfahren)		А
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: irregular				
Topics:				
 tests for goodness of fit, bootstrap, density estimation, robust procedures models with covariates: regression, analysis of variance, generalized linear models Reading List:				
New York, 1999.	Probability and Stat	ictics Land II	unita eartion. Springer	I
Module affiliation:				
 Specialization Bachelor S Master elective module 	Stochastics			

Stochastic Analysis				
(Stochastische Analysis)				A/P
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	IfMS	
Frequency: annual				
 Topics: Stochastic Processes in O Markovian Processes, Lev stochastic Integrals Representations of Marti Girsanov's and its Applic Stochastic Differential Ev Applications to Financial 	Continuous Time: Bro /y Processes ingales ations quations Mathematics	wnian Motion, (Local) Ma	irtingales, Semimartin	gales,
 Reading list: P. Protter: Stochastic Integration and Differential Equations, Springer, 2005 D. Revuz, M. Yor: Continuous Martingales and Brownian Motion, Springer, 1999. L. C. G. Rogers, D. Williams: Diffusions, Markov Processes and Martingales, Volumes 1 & 2, Wiley, New York, 1987, 1994. 				
Recommended Prior Knowledge	Probability and Stat	istics II		
Module affiliation:	- I I			
Specialization Bachelor Stochastics				
IViaster elective module				

Stochastic Simulation				
(Stochastische Simulation)				Α
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility	
Bachelor and Master	4+2	10	Weber	
Frequency: annual				
Topics: Image: General sampling method and principles of Monte Carlo method Image: Simulation of stochastic processes Image: Statistical and computational efficiency analysis Image: Variance reduction techniques Image: Stochastic optimization Image: Advanced topics by recent papers				
 Reading list: S. Asmussen und Glynn, W. Peter: Stochachstic Simulation Algorithms and Analysis, Springer, New York, 2007. H. J. Kushner und G. G. Yin: Stochastic Approximation Algorithms and Applications, 2003. 				
Recommended Prior Knowledge: Probability and Statistics I and II				
 Module affiliation: Specialization Bachelor S Master elective module 	Stochastics			

Time Series Analysis				A	
(Zeitreihenanalyse)					
Type of course	Semester Hours	Credit Points (ECTS):	Responsibility		
Bachelor and Master	2+1	5	IfMS		
Frequency: irregular					
Topics:					
 stationary time series 	stationary time series				
• autocovariance function	• autocovariance function and spectral measure				
 autoregressive processes 	• autoregressive processes, moving average processes				
• spectral representation	• spectral representation				
 Kolmogorov's prediction theory 					
• Statistics in the time domain (estimators for the mean and covariance function)					
• Statistics in the frequence	• Statistics in the frequency domain (periodogram, estimators for the spectral density)				
Reading list:					
Recommended Prior Knowledge: Probability and Statistics II					
Windule attiliation:					
 Specialization Bachelor S 	STOCHASTICS				

Quantitative Risk Management				A
Type of course Bachelor and Master	Semester Hours	Credit Points (ECTS):	Responsibility Weber	
Regulariy: annual	4+2			
Topics: Risk measures and ris Extreme value theory Multivariate modellir Copulas and depende Credit risk manageme	sk aggregation , ng ence structure ent			
 Reading list: A. J. McNeil, R. Fey, and P. Embrechts: <i>Quantitative Risk Management: Concepts, Techniques, and Tools</i>, Princeton Series in Finance, 2015. Recommended Prior Knowledge: Probability and Statistics I and II, possibly Financial Mathematics 1 				
Module affiliation: • Specialization Bachel • Master elective modu	lor Stochastics Ile			